scholarly journals Traffic Sign Recognition Evaluation for Senior Adults Using EEG Signals

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4607
Author(s):  
Dong-Woo Koh ◽  
Jin-Kook Kwon ◽  
Sang-Goog Lee

Elderly people are not likely to recognize road signs due to low cognitive ability and presbyopia. In our study, three shapes of traffic symbols (circles, squares, and triangles) which are most commonly used in road driving were used to evaluate the elderly drivers’ recognition. When traffic signs are randomly shown in HUD (head-up display), subjects compare them with the symbol displayed outside of the vehicle. In this test, we conducted a Go/Nogo test and determined the differences in ERP (event-related potential) data between correct and incorrect answers of EEG signals. As a result, the wrong answer rate for the elderly was 1.5 times higher than for the youths. All generation groups had a delay of 20–30 ms of P300 with incorrect answers. In order to achieve clearer differentiation, ERP data were modeled with unsupervised machine learning and supervised deep learning. The young group’s correct/incorrect data were classified well using unsupervised machine learning with no pre-processing, but the elderly group’s data were not. On the other hand, the elderly group’s data were classified with a high accuracy of 75% using supervised deep learning with simple signal processing. Our results can be used as a basis for the implementation of a personalized safe driving system for the elderly.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2020 ◽  
Author(s):  
Deokju Kim

Abstract Background: The purpose of the present study was to present evidence for driving interventions for the elderly by conducting programs that can improve visual perception and cognitive function in a driving simulator for elderly drivers and analyse their effects.Methods: Three elderly subjects who were 65 years or older, did not have physical and cognitive impairments, and were able to drive themselves participated in the present study. A total of 12 intervention sessions, of which subjects participated in 10 sessions of nine different visual perception and cognitive function programs available in a driving simulator, were conducted and pre- and post-program assessments were conducted (two assessments in total). The assessments included the evaluation of visual perception, frontal lobe function, concentration, safe driving behaviour, and self-efficacy.Results: The results showed positive effects of the driving simulator program on the visual perception, frontal lobe function, concentration, safe driving behaviour, and self-efficacy of all subjects. Changes in the simulator results showed remarkable improvement in the response evaluation, judgment evaluation, and predictive power evaluation, but showed difficulties in interference tasks and depth perception in common.Conclusions: The results showed positive effects of driving simulator training on the driving ability of the elderly, and consistent provision of such training is expected to improve the quality of life of the elderly by securing the safety of driving and actively supporting social participation.


Author(s):  
Anuraag Velamati Et.al

The world is quickly and continuously advancing towards better technological advancements that will make life quite easier for us, human beings [22]. Humans are looking for more interactive and advanced ways to improve their learning. One such dream is making a machine think like a computer, which lead to innovations like AI and deep learning [25]. The world is running at a higher pace in the domain of AI, deep learning, robotics and machine learning Using this knowledge and technology, we could develop anything right now [36]. As a part of sub-domain, the introduction of Convolution Neural Networks made deep learning extensively strong in the domain of image classification and detection [1]..The research that we have conducted is one of its kind. Our research used Convolution Neural Network, TensorFlow and Keras.


Author(s):  
Sebin Jung

Driving-related injuries associated with elderly drivers are on the rise although the overall rate of driving-related injuries has decreased. To determine the causes of this trend, this chapter introduces the characteristics of the elderly's aging health conditions and driving behaviours, and also explains existing vehicle systems that use different safety technologies to promote safe driving. This chapter will show that for the most part, current systems are not created by people with driving difficulties caused by health problems, which in turn often afflict the elderly. Moreover, based on an elderly focus group with declining body conditions, this chapter uses an interview to discover the problems they encounter while driving and demonstrates how new system concepts can be developed for the elderly. Finally, this chapter proposes adequate system concepts for the elderly as a solution that would improve driving safety and provide a more enjoyable driving environment for this population.


2021 ◽  
Author(s):  
Denis A Engemann ◽  
Apolline Mellot ◽  
Richard Hoechenberger ◽  
Hubert Banville ◽  
David Sabbagh ◽  
...  

Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments. However, more research is needed to define methods that can handle the complexity and diversity of M/EEG signals across diverse real-world contexts. To catalyse this effort, here we propose reusable benchmarks of competing machine learning approaches for brain age modeling. We benchmarked popular classical machine learning pipelines and deep learning architectures previously used for pathology decoding or brain age estimation in 4 international M/EEG cohorts from diverse countries and cultural contexts, including recordings from more than 2500 participants. Our benchmarks were built on top of the M/EEG adaptations of the BIDS standard, providing tools that can be applied with minimal modification on any M/EEG dataset provided in the BIDS format. Our results suggest that, regardless of whether classical machine learning or deep learning was used, the highest performance was reached by pipelines and architectures involving spatially aware representations of the M/EEG signals, leading to R^2 scores between 0.60-0.71. Hand-crafted features paired with random forest regression provided robust benchmarks even in situations in which other approaches failed. Taken together, this set of benchmarks, accompanied by open-source software and high-level Python scripts, can serve as a starting point and quantitative reference for future efforts at developing M/EEG-based measures of brain aging. The generality of the approach renders this benchmark reusable for other related objectives such as modeling specific cognitive variables or clinical endpoints.


Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g. hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause for the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: 1) a long short-term memory (LSTM); 2) a proposed spectrogram-based convolutional neural network model (pCNN); and 3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (manual) feature engineering. Results were evaluated on our own, publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from "BCI Competition IV". Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guo X. Hu ◽  
Bao L. Hu ◽  
Zhong Yang ◽  
Li Huang ◽  
Ping Li

Severe weather and long-term driving of vehicles lead to various cracks on asphalt pavement. If these cracks cannot be found and repaired in time, it will have a negative impact on the safe driving of vehicles. Traditional artificial detection has some problems, such as low efficiency and missing detection. The detection model based on machine learning needs artificial design of pavement crack characteristics. According to the pavement distress identification manual proposed by the Federal Highway Administration (FHWA), these categories have three different types of cracks, such as fatigue, longitudinal crack, and transverse cracks. In the face of many types of pavement cracks, it is difficult to design a general feature extraction model to extract pavement crack features, which leads to the poor effect of the automatic detection model based on machine learning. Object detection based on the deep learning model has achieved good results in many fields. As a result, those models have become possible for pavement crack detection. This paper discusses the latest YOLOv5 series detection model for pavement crack detection and is to find out an effective training and detection method. Firstly, the 3001 asphalt crack pavement images with the original size of 2976 × 3978 pixels are collected using a digital camera and are randomly divided into three types according to the severity levels of low, medium, and high. Then, for the dataset of crack pavement, YOLOv5 series models are used for training and testing. The experimental results show that the detection accuracy of the YOLOv5l model is the highest, reaching 88.1%, and the detection time of the YOLOv5s model is the shortest, only 11.1 ms for each image.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document