scholarly journals New Calibration System for Low-Cost Suspended Particulate Matter Sensors with Controlled Air Speed, Temperature and Humidity

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5845
Author(s):  
Zenon Nieckarz ◽  
Jerzy A. Zoladz

This paper presents a calibration system for low-cost suspended particulate matter (PM) sensors, consisting of reference instruments, enclosed space in a metal pipe (volume 0.145 m3), a duct fan, a controller and automated control software. The described system is capable of generating stable and repeatable concentrations of suspended PM in the air duct. In this paper, as the final result, we presented the process and effects of calibration of two low-cost air pollution stations—university measuring stations (UMS)—developed and used in the scientific project known as Storm&DustNet, implemented at the Jagiellonian University in Kraków (Poland), for the concentration range of PM from a few up to 240 µg·m–3. Finally, we postulate that a device of this type should be available for every system composed of a large number of low-cost PM sensors.

1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


Sign in / Sign up

Export Citation Format

Share Document