scholarly journals Lane Detection Aided Online Dead Reckoning for GNSS Denied Environments

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6805
Author(s):  
Jinhwan Jeon ◽  
Yoonjin Hwang ◽  
Yongseop Jeong ◽  
Sangdon Park ◽  
In So Kweon ◽  
...  

With the emerging interest of autonomous vehicles (AV), the performance and reliability of the land vehicle navigation are also becoming important. Generally, the navigation system for passenger car has been heavily relied on the existing Global Navigation Satellite System (GNSS) in recent decades. However, there are many cases in real world driving where the satellite signals are challenged; for example, urban streets with buildings, tunnels, or even underpasses. In this paper, we propose a novel method for simultaneous vehicle dead reckoning, based on the lane detection model in GNSS-denied situations. The proposed method fuses the Inertial Navigation System (INS) with learning-based lane detection model to estimate the global position of vehicle, and effectively bounds the error drift compared to standalone INS. The integration of INS and lane model is accomplished by UKF to minimize linearization errors and computing time. The proposed method is evaluated through the real-vehicle experiments on highway driving, and the comparative discussions for other dead-reckoning algorithms with the same system configuration are presented.

2020 ◽  
Vol 12 (16) ◽  
pp. 2550
Author(s):  
Kai-Wei Chiang ◽  
Yu-Hua Li ◽  
Li-Ta Hsu ◽  
Feng-Yu Chu

Global navigation satellite system (GNSS) is widely regarded as the primary positioning solution for intelligent transport system (ITS) applications. However, its performance could degrade, due to signal outages and faulty-signal contamination, including multipath and non-line-of-sight reception. Considering the limitation of the performance and computation loads in mass-produced automotive products, this research investigates the methods for enhancing GNSS-based solutions without significantly increasing the cost for vehicular navigation system. In this study, the measurement technique of the odometer in modern vehicle designs is selected to integrate the GNSS information, without using an inertial navigation system. Three techniques are implemented to improve positioning accuracy; (a) Time-differenced carrier phase (TDCP) based filter: A state-augmented extended Kalman filter is designed to incorporate TDCP measurements for maximizing the effectiveness of phase-smoothing; (b) odometer-aided constraints: The aiding measurement from odometer utilizing forward speed with the lateral constraint enhances the state estimation; the information based on vehicular motion, comprising the zero-velocity constraint, fault detection and exclusion, and dead reckoning, maintains the stability of the positioning solution; (c) robust regression: A weighted-least-square based robust regression as a measurement-quality assessment is applied to adjust the weightings of the measurements adaptively. Experimental results in a GNSS-challenging environment indicate that, based on the single-point-positioning mode with an automotive-grade receiver, the combination of the proposed methods presented a root-mean-square error of 2.51 m, 3.63 m, 1.63 m, and 1.95 m for the horizontal, vertical, forward, and lateral directions, with improvements of 35.1%, 49.6%, 45.3%, and 21.1%, respectively. The statistical analysis exhibits 97.3% state estimation result in the horizontal direction for the percentage of epochs that had errors of less than 5 m, presenting that after the intervention of proposed methods, the positioning performance can fulfill the requirements for road level applications.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 397
Author(s):  
Hossein Shoushtari ◽  
Thomas Willemsen ◽  
Harald Sternberg

There are many ways to navigate in Global Navigation Satellite System-(GNSS) shaded areas. Reliable indoor pedestrian navigation has been a central aim of technology researchers in recent years; however, there still exist open challenges requiring re-examination and evaluation. In this paper, a novel dataset is used to evaluate common approaches for autonomous and infrastructure-based positioning methods. The autonomous variant is the most cost-effective realization; however, realizations using the real test data demonstrate that the use of only autonomous solutions cannot always provide a robust solution. Therefore, correction through the use of infrastructure-based position estimation based on smartphone technology is discussed. This approach invokes the minimum cost when using existing infrastructure, whereby Pedestrian Dead Reckoning (PDR) forms the basis of the autonomous position estimation. Realizations with Particle Filters (PF) and a topological approach are presented and discussed. Floor plans and routing graphs are used, in this case, to support PDR positioning. The results show that the positioning model loses stability after a given period of time. Fifth Generation (5G) mobile networks can enable this feature, as well as a massive number of use-cases, which would benefit from user position data. Therefore, a fusion concept of PDR and 5G is presented, the benefit of which is demonstrated using the simulated data. Subsequently, the first implementation of PDR with 5G positioning using PF is carried out.


Author(s):  
Viacheslav Adamchuk ◽  
Bradley S. Barker ◽  
Gwen Nugent ◽  
Neal Grandgenett ◽  
Megan Patent-Nygren ◽  
...  

In the increasingly modern and technological world, it has become common to use global navigation satellite system (GNSS), such as Global Positioning System (GPS), receivers, and Geographic Information Systems (GIS) in everyday life. GPS-equipped mobile devices and various Web services help users worldwide to determine their locations in real-time and to explore unfamiliar land areas using virtual tools. From the beginning, geospatial technologies have been driven by the need to make efficient use of natural resources. More recently, GPS-equipped autonomous vehicles and aircraft have been under development to facilitate technological processes, such as agricultural operations, transportation, or scouting, with limited or virtual human control. As outdoor robotics relies upon a number of principles related to science, technology, engineering, and mathematics (STEM), using such an instructional context for non-formal education has been promising. As a result, the Geospatial and Robotics Technologies for the 21st Century program discussed in this chapter integrates educational robotics and GPS/GIS technologies to provide educational experiences through summer camps, 4-H clubs, and afterschool programs. The project’s impact was assessed in terms of: a) youth learning of computer programming, mathematics, geospatial and engineering/robotics concepts as well as b) youth attitudes and motivation towards STEM-related disciplines. An increase in robotics, GPS, and GIS learning questionnaire scores and a stronger self-efficacy in relevant STEM areas have been found through a set of project-related assessment instruments.


Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 121-137
Author(s):  
Haidy Y. F. Elghamrawy ◽  
Mohamed Tamazin ◽  
Aboelmagd Noureldin

There is a growing demand for robust and accurate positioning information for various applications, including the self-driving car industry. Such applications rely mainly on the Global Navigation Satellite System (GNSS), including the Global Positioning System (GPS). However, GPS positioning accuracy relies on several factors, such as satellite geometry, receiver architecture, and navigation environment, to name a few. In urban canyons in which there is a significant probability of signal blockage of one or more satellites and/or interference, the positioning accuracy of scalar-based GPS receivers drastically deteriorates. On the other hand, vector-based GPS receivers exhibit some immunity to momentary outages and interference. Therefore, it is becoming necessary to consider vector-based GPS receivers for several applications, especially safety-critical applications, including next-generation navigation technologies for autonomous vehicles. This paper investigates a vector-based receiver’s performance and compares it to its scalar counterpart in signal degraded conditions. The realistic simulation experiments in this paper are conducted on GPS L1 C/A signals generated using the SpirentTM simulation system to create a fully controlled environment to examine and validate the performance. The results show that the vector tracking system outperforms the scalar tracking in terms of position and velocity estimation accuracy in signal-degraded environments.


2018 ◽  
Vol 8 (11) ◽  
pp. 2322 ◽  
Author(s):  
Lin Zhao ◽  
Mouyan Wu ◽  
Jicheng Ding ◽  
Yingyao Kang

The strategic position of the polar area and its rich natural resources are becoming increasingly important, while the northeast and northwest passages through the Arctic are receiving much attention as glaciers continue to melt. The global navigation satellite system (GNSS) can provide real-time observation data for the polar areas, but may suffer low elevation problems of satellites, signals with poor carrier-power-to-noise-density ratio (C/N0), ionospheric scintillations, and dynamic requirements. In order to improve the navigation performance in polar areas, a deep-coupled navigation system with dual-frequency GNSS and a grid strapdown inertial navigation system (SINS) is proposed in the paper. The coverage and visibility of the GNSS constellation in polar areas are briefly reviewed firstly. Then, the joint dual-frequency vector tracking architecture of GNSS is designed with the aid of grid SINS information, which can optimize the tracking band, sharing tracking information to aid weak signal channels with strong signal channels and meet the dynamic requirement to improve the accuracy and robustness of the system. Besides this, the ionosphere-free combination of global positioning system (GPS) L1 C/A and L2 signals is used in the proposed system to further reduce ionospheric influence. Finally, the performance of the system is tested using a hardware simulator and semiphysical experiments. Experimental results indicate that the proposed system can obtain a better navigation accuracy and robust performance in polar areas.


2014 ◽  
Vol 26 (2) ◽  
pp. 214-224 ◽  
Author(s):  
Taro Suzuki ◽  
◽  
Mitsunori Kitamura ◽  
Yoshiharu Amano ◽  
Nobuaki Kubo ◽  
...  

This paper describes the development of a mobile robot system and an outdoor navigationmethod based on global navigation satellite system (GNSS) in an autonomous mobile robot navigation challenge, called the Tsukuba Challenge, held in Tsukuba, Japan, in 2011 and 2012. The Tsukuba Challenge promotes practical technologies for autonomous mobile robots working in ordinary pedestrian environments. Many teams taking part in the Tsukuba Challenge used laser scanners to determine robot positions. GNSS was not used in localization because its positioning has multipath errors and problems in availability. We propose a technique for realizing multipath mitigation that uses an omnidirectional IR camera to exclude “invisible” satellites, i.e., those entirely obstructed by a building and whose direct waves therefore are not received. We applied GPS / dead reckoning (DR) integrated based on observation data from visible satellites determined by the IR camera. Positioning was evaluated during Tsukuba Challenge 2011 and 2012. Our robot ran the 1.4 km course autonomously and evaluation results confirmed the effectiveness of our proposed technique and the feasibility of its highly accurate positioning.


1970 ◽  
Vol 23 (1) ◽  
pp. 26-44 ◽  
Author(s):  
F. S. Stringer

In 1963, in addition to examining the characteristics of the Omega system, we were also very concerned with a comprehensive navigation system study which was designed to examine all aspects of a world-wide navigation system operating in a B.O.A.C. type environment. This concerned a study of dead reckoning as well as externally referenced sources of information. You have the choice of an all dead reckoning system probably employing multiple sensors of the same type, triple IN is typical, or you could have a mixture of externally referenced and self-contained, in other words dead reckoning sensors. Occasional reference could be made to short-range aids or even a satellite system if available to increase the integrity of the position-fixing information. The inertial and computer aspects have been examined by the Avionics Department at R.A.E. whereas the radio sensors, which are externally referenced, and the relevant software have been the responsibility of the Radio Department.


1998 ◽  
Vol 51 (3) ◽  
pp. 382-393 ◽  
Author(s):  
M. Tsakiri ◽  
M. Stewart ◽  
T. Forward ◽  
D. Sandison ◽  
J. Walker

The increasing volume of traffic in urban areas has resulted in steady growth of the mean driving time on fixed routes. Longer driving times lead to significantly higher transportation costs, particularly for vehicle fleets, where efficiency in the distribution of their transport tasks is important in staying competitive in the market. For bus fleets, the optimal control and command of the vehicles is, as well as the economic requirements, a basic function of their general mission. The Global Positioning System (GPS) allows reliable and accurate positioning of public transport vehicles except within the physical limitations imposed by built-up city ‘urban canyons’. With a view to the next generation of satellite positioning systems for public transport fleet management, this paper highlights the limitations imposed on current GPS systems operating in the urban canyon. The capabilities of a future positioning system operating in this type of environment are discussed. It is suggested that such a system could comprise receivers capable of integrating the Global Positioning System (GPS) and the Russian equivalent, the Global Navigation Satellite System (GLONASS), and relatively cheap dead-reckoning sensors.


Sign in / Sign up

Export Citation Format

Share Document