scholarly journals Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7421
Author(s):  
Abhilash Vakkada Ramachandran ◽  
María-Paz Zorzano ◽  
Javier Martín-Torres

The water content of the upper layers of the surface of Mars is not yet quantified. Laboratory simulations are the only feasible way to investigate this in a controlled way on Earth, and then compare it with remote and in situ observations of spacecrafts on Mars. Describing the processes that may induce changes in the water content of the surface is critical to determine the present-day habitability of the Martian surface, to understand the atmospheric water cycle, and to estimate the efficiency of future water extraction procedures from the regolith for In Situ Resource Utilization (ISRU). This paper illustrates the application of the SpaceQ facility to simulate the near-surface water cycle under Martian conditions. Rover Environmental Monitoring Station (REMS) observations at Gale crater show a non-equilibrium situation in the atmospheric H2O volume mixing ratio (VMR) at night-time, and there is a decrease in the atmospheric water content by up to 15 g/m2 within a few hours. This reduction suggests that the ground may act at night as a cold sink scavenging atmospheric water. Here, we use an experimental approach to investigate the thermodynamic and kinetics of water exchange between the atmosphere, a non-porous surface (LN2-chilled metal), various salts, Martian regolith simulant, and mixtures of salts and simulant within an environment which is close to saturation. We have conducted three experiments: the stability of pure liquid water around the vicinity of the triple point is studied in experiment 1, as well as observing the interchange of water between the atmosphere and the salts when the surface is saturated; in experiment 2, the salts were mixed with Mojave Martian Simulant (MMS) to observe changes in the texture of the regolith caused by the interaction with hydrates and liquid brines, and to quantify the potential of the Martian regolith to absorb and retain water; and experiment 3 investigates the evaporation of pure liquid water away from the triple point temperature when both the air and ground are at the same temperature and the relative humidity is near saturation. We show experimentally that frost can form spontaneously on a surface when saturation is reached and that, when the temperature is above 273.15 K (0 °C), this frost can transform into liquid water, which can persist for up to 3.5 to 4.5 h at Martian surface conditions. For comparison, we study the behavior of certain deliquescent salts that exist on the Martian surface, which can increase their mass between 32% and 85% by absorption of atmospheric water within a few hours. A mixture of these salts in a 10% concentration with simulant produces an aggregated granular structure with a water gain of approximately 18- to 50-wt%. Up to 53% of the atmospheric water was captured by the simulated ground, as pure liquid water, hydrate, or brine.

2020 ◽  
Vol 33 (9) ◽  
pp. 3449-3470
Author(s):  
Erik Höjgård-Olsen ◽  
Hélène Brogniez ◽  
Hélène Chepfer

AbstractBetter understanding of how moisture, clouds, and precipitation covary under climate warming lacks a comprehensive observational view. This paper analyzes the tropical atmospheric water cycle’s evolution with sea surface temperature (SST), using for the first time, the synergistic dataset of instantaneous observations of the relative humidity profile from the Megha-Tropiques satellite, clouds from the CALIPSO satellite, and near-surface precipitation from the CloudSat satellite, and quantifies their rates of change with SST warming. The dataset is partitioned into three vertical velocity regimes, with cloudy grid boxes categorized by phase (ice or liquid), opacity (opaque or thin), and the presence of near-surface precipitation. Opaque cloud cover is always larger in the presence of near-surface precipitation (high ice clouds especially). Low liquid water clouds in the descending regime dominate for SSTs < 299.25 K, where the free troposphere is dry (~20%), and opaque liquid water cloud cover decreases with SST warming (−8% K−1) and thin liquid water cloud cover stays constant (~20%). High ice clouds dominate the ascending regime in which, for 299.25 < SST < 301.75 K, humidity increases with SST in the lower free troposphere and peaks around 302 K. Over the warm SST range (>301.75 K), in the ascending regime, opaque high ice cloud cover decreases with SST (−13% K−1), while thin ice cloud cover increases (+6% K−1). Over the warm SST range, total cloudiness decreases with warming in all regimes. This paper characterizes fundamental relationships between aspects of the tropical atmospheric water cycle and SST.


2020 ◽  
Author(s):  
Cedric Schmelzbach ◽  
Nienke Brinkman ◽  
David Sollberger ◽  
Sharon Kedar ◽  
Matthias Grott ◽  
...  

&lt;p&gt;The InSight ultra-sensitive broadband seismometer package (SEIS) was installed on the Martian surface with the goal to study the seismicity on Mars and the deep interior of the Planet. A second surface-based instrument, the heat flow and physical properties package HP&lt;sup&gt;3&lt;/sup&gt;, was placed on the Martian ground about 1.1 m away from SEIS. HP&lt;sup&gt;3&lt;/sup&gt; includes a self-hammering probe called the &amp;#8216;mole&amp;#8217; to measure the heat coming from Mars' interior at shallow depth to reveal the planet's thermal history. While SEIS was designed to study the deep structure of Mars, seismic signals such as the hammering &amp;#8216;noise&amp;#8217; as well as ambient and other instrument-generated vibrations allow us to investigate the shallow subsurface. The resultant near-surface elastic property models provide additional information to interpret the SEIS data and allow extracting unique geotechnical information on the Martian regolith.&lt;/p&gt;&lt;p&gt;The seismic signals recorded during HP&lt;sup&gt;3&lt;/sup&gt; mole operations provide information about the mole attitude and health as well as shed light on the near-surface, despite the fact that the HP&lt;sup&gt;3 &lt;/sup&gt;mole continues to have difficulty penetrating below 40 cm (one mole length). The seismic investigation of the HP&lt;sup&gt;3&lt;/sup&gt; hammering signals, however, was not originally planned during mission design and hence faced several technical challenges. For example, the anti-aliasing filters of the seismic-data acquisition chain were adapted when recording the mole hammering to allow recovering information above the nominal Nyquist frequency. In addition, the independently operating SEIS, HP&lt;sup&gt;3&lt;/sup&gt; and lander clocks had to be correlated more frequently than in normal operation to enable high-precision timing.&lt;/p&gt;&lt;p&gt;To date, the analysis of the hammering signals allowed us to constrain the bulk P-wave velocity of the volume between the mole tip and SEIS (top 30 cm) to around 120 m/s. This low velocity value is compatible with laboratory tests performed on Martian regolith analogs with a density of around 1500 kg/m&lt;sup&gt;3&lt;/sup&gt;. Furthermore, the SEIS leveling system resonances, seismic recordings of atmospheric pressure signals, HP&lt;sup&gt;3&lt;/sup&gt; housekeeping data, and imagery provide additional constraints to establish a first seismic model of the shallow (topmost meters) subsurface at the landing site.&lt;/p&gt;


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Deborah Maus ◽  
Jacob Heinz ◽  
Janosch Schirmack ◽  
Alessandro Airo ◽  
Samuel P. Kounaves ◽  
...  

AbstractThe current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.


2020 ◽  
Author(s):  
Konstantinos Doulgeris ◽  
David Brus

&lt;p&gt;Clouds and their interaction with aerosols are considered one of the major factors that are connected with uncertainties in predictions of climate change and are highly associated with earth radiative balance. Semi long term in-situ measurements of Arctic low-level clouds have been conducted during last 10 year (2009 - 2019) autumns at Sammaltunturi station (67&amp;#9702;58&amp;#180;N, 24&amp;#9702;07&amp;#180;E, and 560 m a.s.l.), the part of Pallas Atmosphere - Ecosystem Supersite and Global Atmosphere Watch (GAW) programme. During these years a unique data set of continuous and detailed ground-based cloud observations over the sub-Arctic area was obtained. The in-situ cloud measurements were made using two cloud probes that were installed on the roof of the station: the Cloud, Aerosol and Precipitation Spectrometer probe (CAPS) and the Forward Scattering Spectrometer Probe&lt;strong&gt; (&lt;/strong&gt;FSSP&lt;strong&gt;)&lt;/strong&gt;, both made by droplet measurement technologies (DMT, Longmont, CO, USA). CAPS in&amp;#173;cludes three instruments: the Cloud Imaging Probe (CIP, 12.5 &amp;#956;m-1.55 mm), the Cloud and Aerosol Spectrometer (CAS-DPOL, 0.51-50 &amp;#956;m) with depolarization feature and the Hotwire Liquid Water Content Sensor (Hotwire LWC, 0 - 3 g/m&lt;sup&gt;3&lt;/sup&gt;). Vaisala FD12P weather sensor was used to measure all the meteorological data. The essential cloud microphysical parameters we investigated during this work were the size distributions, the total number concentrations, the effective radius of cloud droplets and the cloud liquid water content. The year to year comparison and correlations among semi long term in situ cloud measurements and meteorology are presented.&lt;/p&gt;


2014 ◽  
Vol 14 (12) ◽  
pp. 5943-5957 ◽  
Author(s):  
K. Gribanov ◽  
J. Jouzel ◽  
V. Bastrikov ◽  
J.-L. Bonne ◽  
F.-M. Breon ◽  
...  

Abstract. Water stable isotopologues provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs) provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.


2018 ◽  
Author(s):  
Achim Heilig ◽  
Olaf Eisen ◽  
Michael MacFerrin ◽  
Marco Tedesco ◽  
Xavier Fettweis

Abstract. Increasing melt over the Greenland ice sheet (GrIS) recorded over the past years has resulted in significant changes of the percolation regime of the ice sheet. It remains unclear whether Greenland's percolation zone will act as meltwater buffer in the near future through gradually filling all pore space or if near-surface refreezing causes the formation of impermeable layers, which provoke lateral runoff. Homogeneous ice layers within perennial firn, as well as near-surface ice layers of several meter thickness are observable in firn cores. Because firn coring is a destructive method, deriving stratigraphic changes in firn and allocation of summer melt events is challenging. To overcome this deficit and provide continuous data for model evaluations on snow and firn density, temporal changes in liquid water content and depths of water infiltration, we installed an upward-looking radar system (upGPR) 3.4 m below the snow surface in May 2016 close to Camp Raven (66.4779° N/46.2856° W) at 2120 m a.s.l. The radar is capable to monitor quasi-continuously changes in snow and firn stratigraphy, which occur above the antennas. For summer 2016, we observed four major melt events, which routed liquid water into various depths beneath the surface. The last event in mid-August resulted in the deepest percolation down to about 2.3 m beneath the surface. Comparisons with simulations from the regional climate model MAR are in very good agreement in terms of seasonal changes in accumulation and timing of onset of melt. However, neither bulk density of near-surface layers nor the amounts of liquid water and percolation depths predicted by MAR correspond with upGPR data. Radar data and records of a nearby thermistor string, in contrast, matched very well, for both, timing and depth of temperature changes and observed water percolations. All four melt events transferred a cumulative mass of 56 kg/m2 into firn beneath the summer surface of 2015. We find that continuous observations of liquid water content, percolation depths and rates for the seasonal mass fluxes are sufficiently accurate to provide valuable information for validation of model approaches and help to develop a better understanding of liquid water retention and percolation in perennial firn.


Sign in / Sign up

Export Citation Format

Share Document