scholarly journals Graphene-Based Sensor for Detection of Bacterial Pathogens

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8085
Author(s):  
Santosh Pandit ◽  
Mengyue Li ◽  
Yanyan Chen ◽  
Shadi Rahimi ◽  
Vrss Mokkapati ◽  
...  

Microbial colonization to biomedical surfaces and biofilm formation is one of the key challenges in the medical field. Recalcitrant biofilms on such surfaces cause serious infections which are difficult to treat using antimicrobial agents, due to their complex structure. Early detection of microbial colonization and monitoring of biofilm growth could turn the tide by providing timely guidance for treatment or replacement of biomedical devices. Hence, there is a need for sensors, which could generate rapid signals upon bacterial colonization. In this study, we developed a simple prototype sensor based on pristine, non-functionalized graphene. The detection principle is a change in electrical resistance of graphene upon exposure to bacterial cells. Without functionalization with specific receptors, such sensors cannot be expected to be selective to certain bacteria. However, we demonstrated that two different bacterial species can be detected and differentiated by our sensor due to their different growth dynamics, adherence pattern, density of adhered bacteria and microcolonies formation. These distinct behaviors of tested bacteria depicted distinguishable pattern of resistance change, resistance versus gate voltage plot and hysteresis effect. This sensor is simple to fabricate, can easily be miniaturized, and can be effective in cases when precise identification of species is not needed.

2013 ◽  
Vol 19 (S4) ◽  
pp. 23-24 ◽  
Author(s):  
A.J. Anjos ◽  
P. Nolasco ◽  
J.M. Aquino Marques ◽  
F. Cabrita ◽  
M.F.C. Pereira ◽  
...  

The oral cavity is susceptible to several calcifications such as salivary calculi (sialoliths), dental calculus (tartar) and tonsillar concretions (tonsilloliths). Although several individual studies had been already carried out, a comprehensive morphological and elemental comparison between them is still missing.Sialoliths are most commonly found in the submandibular glands and are composed of regions rich in Ca and P minerals, namely hydroxyapatite, whitlockite and brushite, and regions consisting of organic matter with high-sulphur content. These regions are organized in alternating concentric layers. Several bacterial species have also been identified in sialoliths microstructure showing that infection occurs recurrently throughout the stone formation.Generally, tartar presents an inorganic structure rich in Ca and P minerals, such as brushite, octacalcium phosphate, hydroxyapatite and whitlockite, and an organic matrix, mainly constituted by aerobic bacteria and yeast or just anaerobic bacteria.Tonsilloliths occur most commonly on the crypts of the palatal tonsils and are composed of a mixture of organic matter, namely bacterial cells and epithelial debris, as well as inorganic material rich in Ca and P minerals such as hydroxyapatite. Volatile sulphur compounds produced by anaerobic bacteria are usually associated to these, in general, innocuous structures.The current study involved the ultrastructure and chemical characterization of the calcified structures by scanning electron microscopy (SEM) combined with energy dispersive spectroscopy carried out with a JEOL JSM 7001F instrument with an INCA pentaFetx3 Oxford spectrometer operated at 15 kV. Higher resolution characterization has been performed by transmission electron microscopy (TEM) using a H8100 Hitachi instrument operated at 200 kV. SEM samples were prepared following metallographic procedures, whereas TEM samples were obtained following standard biological sample preparation procedures.The results show that sialoliths present the most complex structure, with a central core surrounded by concentric layers, while tartar and tonsilloliths do not have a distinctive architecture (Figures 1 (a), 2 (a) and 3 (a). At higher magnifications, layered structures, as well as crystals could be found in sialoliths and tartar (Figures 1 (b) and 2 (b). Bacteria were common in all the calcified structures, although in tonsilloliths their abundance is higher (Figure 3 (b)). All calcifications have similar elemental constitution, with Ca and P, indicating the presence of calcium phosphates (Figures 1 (c), 2 (c) and 3 (c). Sulphur was also found associated with the organic matter in sialoliths and tonsilloliths, though the amounts found in the latter were much smaller than initially expected.Based on the similarities found, new correlations between these calcification will be available. For instance, the mineralization process described in tartar can help understand the similar processes occurring in sialoliths and tonsilloliths, while the association between bacteria and sulphur in tonsilloliths can be a clue for their presence in sialoliths.The work was carried out with financial support of the Portuguese Foundation for Science and Technology through PTDC/SAU-ENB/111941/2009 and PEst-OE/CTM-UI0084/2011 grants.


2010 ◽  
Vol 76 (14) ◽  
pp. 4788-4796 ◽  
Author(s):  
Beat Frey ◽  
Stefan R. Rieder ◽  
Ivano Brunner ◽  
Michael Plötze ◽  
Stefan Koetzsch ◽  
...  

ABSTRACT Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.


Biomolecules ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 29 ◽  
Author(s):  
Evan Haney ◽  
Michael Trimble ◽  
John Cheng ◽  
Quentin Vallé ◽  
Robert Hancock

Biofilms are multicellular communities of bacteria that can adhere to virtually any surface. Bacterial biofilms are clinically relevant, as they are responsible for up to two-thirds of hospital acquired infections and contribute to chronic infections. Troublingly, the bacteria within a biofilm are adaptively resistant to antibiotic treatment and it can take up to 1000 times more antibiotic to kill cells within a biofilm when compared to planktonic bacterial cells. Identifying and optimizing compounds that specifically target bacteria growing in biofilms is required to address this growing concern and the reported antibiofilm activity of natural and synthetic host defence peptides has garnered significant interest. However, a standardized assay to assess the activity of antibiofilm agents has not been established. In the present work, we describe two simple assays that can assess the inhibitory and eradication capacities of peptides towards biofilms that are formed by both Gram-positive and negative bacteria. These assays are suitable for high-throughput workflows in 96-well microplates and they use crystal violet staining to quantify adhered biofilm biomass as well as tetrazolium chloride dye to evaluate the metabolic activity of the biofilms. The effect of media composition on the readouts of these biofilm detection methods was assessed against two strains of Pseudomonas aeruginosa (PAO1 and PA14), as well as a methicillin resistant strain of Staphylococcus aureus. Our results demonstrate that media composition dramatically alters the staining patterns that were obtained with these dye-based methods, highlighting the importance of establishing appropriate biofilm growth conditions for each bacterial species to be evaluated. Confocal microscopy imaging of P. aeruginosa biofilms grown in flow cells revealed that this is likely due to altered biofilm architecture under specific growth conditions. The antibiofilm activity of several antibiotics and synthetic peptides were then evaluated under both inhibition and eradication conditions to illustrate the type of data that can be obtained using this experimental setup.


2007 ◽  
Vol 51 (8) ◽  
pp. 2733-2740 ◽  
Author(s):  
G. Donelli ◽  
I. Francolini ◽  
D. Romoli ◽  
E. Guaglianone ◽  
A. Piozzi ◽  
...  

ABSTRACT Antibiotic therapies to eradicate medical device-associated infections often fail because of the ability of sessile bacteria, encased in their exopolysaccharide matrix, to be more drug resistant than planktonic organisms. In the last two decades, several strategies to prevent microbial adhesion and biofilm formation on the surfaces of medical devices, based mainly on the use of antiadhesive, antiseptic, and antibiotic coatings on polymer surfaces, have been developed. More recent alternative approaches are based on molecules able to interfere with quorum-sensing phenomena or to dissolve biofilms. Interestingly, a newly purified β-N-acetylglucosaminidase, dispersin B, produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans, is able to dissolve mature biofilms produced by Staphylococcus epidermidis as well as some other bacterial species. Therefore, in this study, we developed new polymeric matrices able to bind dispersin B either alone or in combination with an antibiotic molecule, cefamandole nafate (CEF). We showed that our functionalized polyurethanes could adsorb a significant amount of dispersin B, which was able to exert its hydrolytic activity against the exopolysaccharide matrix produced by staphylococcal strains. When microbial biofilms were exposed to both dispersin B and CEF, a synergistic action became evident, thus characterizing these polymer-dispersin B-antibiotic systems as promising, highly effective tools for preventing bacterial colonization of medical devices.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 637 ◽  
Author(s):  
Antonio Rosato ◽  
Sabina Sblano ◽  
Lara Salvagno ◽  
Alessia Carocci ◽  
Maria Lisa Clodoveo ◽  
...  

In recent years, the increase of bacteria antibiotic- resistance has been a severe problem for public health. A useful solution could be to join some phytochemicals naturally present in essential oils (EOs) to the existing antibiotics, with the aim to increase their efficacy in therapies. According to in vitro studies, EOs and their components could show such effects. Among them, we studied the activity of Cinnammonum zeylanicum, Mentha piperita, Origanum vulgare, and Thymus vulgaris EOs on bacterial biofilm and their synergism when used in association with some common antibiotics such as norfloxacin, oxacillin, and gentamicin. The chemical composition of EOs was determined using gas chromatography (GC) coupled with mass spectrometry (MS) techniques. The EOs drug efficacy was evaluated on four different strains of Gram-positive bacteria forming biofilms. The synergistic effects were tested through the chequerboard microdilution method. The association EOs-antibiotics showed a strong destruction of the biofilm growth of the four bacterial species considered. The interaction of norfloxacin with EOs was the most effective in all the tested combinations against the strains object of this study. These preliminary results suggest the formulation of a new generation of antimicrobial agents based on a combination of antimicrobial compounds with different origin.


2011 ◽  
Vol 77 (10) ◽  
pp. 3380-3390 ◽  
Author(s):  
Valeria A. Torok ◽  
Gwen E. Allison ◽  
Nigel J. Percy ◽  
Kathy Ophel-Keller ◽  
Robert J. Hughes

ABSTRACTThe effects of avilamycin, zinc bacitracin, and flavophospholipol on broiler gut microbial community colonization and bird performance in the first 17 days posthatch were investigated. Significant differences in gut microbiota associated with gut section, dietary treatment, and age were identified by terminal restriction fragment length polymorphism (T-RFLP), although no performance-related differences between dietary treatments were detected. Similar age-related shifts in the gut microbiota were identified regardless of diet but varied between the ilea and ceca. Interbird variabilities in ileal bacterial communities were reduced (3 to 7 days posthatch) in chicks fed with feed containing antimicrobial agents. Avilamycin and flavophospholipol had the most consistent effect on gut microbial communities. Operational taxonomic units (OTU) linked to changes in gut microbiota in birds on antimicrobial-supplemented diets were characterized and identified. Some OTUs could be identified to the species level; however, the majority could be only tentatively classified to the genus, family, order, or domain level. OTUs 140 to 146 (Lachnospiraceae), OTU 186/188 (Lactobacillus johnsonii), OTU 220 (Lachnospiraceae), OTUs 284 to 288 (unclassified bacterial spp. orRuminococcaceae), OTU 296/298 (unclassified bacterium orClostridiales), and OTU 480/482 (Oxalobacteraceae) were less prevalent in the guts of chicks fed antimicrobial-supplemented diets. OTU 178/180 (Lactobacillus crispatus), OTU 152 (Lactobacillus reuterior unclassifiedClostridiales), OTU 198/200 (Subdoligranulumspp.), and OTU 490/492 (unclassified bacterium orEnterobacteriaceae) were less prevalent in the gut of chicks raised on the antimicrobial-free diet. The identification of key bacterial species influenced by antimicrobial-supplemented feed immediately posthatch may assist in the formulation of diets that facilitate beneficial gut microbial colonization and, hence, the development of alternatives to current antimicrobial agents in feed for sustainable poultry production.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


2020 ◽  
Vol 17 (4) ◽  
pp. 498-506 ◽  
Author(s):  
Pavan K. Mujawdiya ◽  
Suman Kapur

: Quorum Sensing (QS) is a phenomenon in which bacterial cells communicate with each other with the help of several low molecular weight compounds. QS is largely dependent on population density, and it triggers when the concentration of quorum sensing molecules accumulate in the environment and crosses a particular threshold. Once a certain population density is achieved and the concentration of molecules crosses a threshold, the bacterial cells show a collective behavior in response to various chemical stimuli referred to as “auto-inducers”. The QS signaling is crucial for several phenotypic characteristics responsible for bacterial survival such as motility, virulence, and biofilm formation. Biofilm formation is also responsible for making bacterial cells resistant to antibiotics. : The human gut is home to trillions of bacterial cells collectively called “gut microbiota” or “gut microbes”. Gut microbes are a consortium of more than 15,000 bacterial species and play a very crucial role in several body functions such as metabolism, development and maturation of the immune system, and the synthesis of several essential vitamins. Due to its critical role in shaping human survival and its modulating impact on body metabolisms, the gut microbial community has been referred to as “the forgotten organ” by O`Hara et al. (2006) [1]. Several studies have demonstrated that chemical interaction between the members of bacterial cells in the gut is responsible for shaping the overall microbial community. : Recent advances in phytochemical research have generated a lot of interest in finding new, effective, and safer alternatives to modern chemical-based medicines. In the context of antimicrobial research various plant extracts have been identified with Quorum Sensing Inhibitory (QSI) activities among bacterial cells. This review focuses on the mechanism of quorum sensing and quorum sensing inhibitors isolated from natural sources.


Sign in / Sign up

Export Citation Format

Share Document