scholarly journals Ultra-Low-Power FinFETs-Based TPCA-PUF Circuit for Secure IoT Devices

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8302
Author(s):  
Cancio Monteiro ◽  
Yasuhiro Takahashi

Low-power and secure crypto-devices are in crucial demand for the current emerging technology of the Internet of Things (IoT). In nanometer CMOS technology, the static and dynamic power consumptions are in a very critical challenge. Therefore, the FinFETs is an alternative technology due to its superior attributes of non-leakage power, intra-die variability, low-voltage operation, and lower retention voltage of SRAMs. In this study, our previous work on CMOS two-phase clocking adiabatic physical unclonable function (TPCA-PUF) is evaluated in a FinFET device with a 4-bits PUF circuit complexity. The TPCA-PUF-based shorted-gate (SG) and independent-gate (IG) modes of FinFETs are investigated under various ambient temperatures, process variations, and ±20% of supply voltage variations. To validate the proposed TPCA-PUF circuit, the QUALPFU-based Fin-FETs are compared in terms of cyclical energy dissipation, the security metrics of the uniqueness, the reliability, and the bit-error-rate (BER). The proposed TPCA-PUF is simulated using 45 nm process technology with a supply voltage of 1 V. The uniqueness, reliability, and the BER of the proposed TPCA-PUF are 50.13%, 99.57%, and 0.43%, respectively. In addition, it requires a start-up power of 18.32 nW and consumes energy of 2.3 fJ/bit/cycle at the reference temperature of 27 °C.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1258
Author(s):  
Câncio Monteiro ◽  
Yasuhiro Takahashi

Internet of Things (IoT) has enabled battery-powered devices to transmit sensitive data, while presenting high power consumption and security issues. To address these challenges, adiabatic-based physical unclonable functions (PUFs) offer a promising solution for low-power and secure IoT device applications. In this study, we propose a novel low-power two-phase clocking adiabatic PUF. The proposed adiabatic PUF utilizes a trapezoidal power clock signal with a time-ramped voltage to achieve an improved energy efficiency and reliable start-up PUF behavior. Static CMOS logic is employed to produce stable challenge-response pairs (CRPs) in the adiabatic mode. The pull-down network is designed to control the PUF cell to charge and discharge its output nodes with a constant supply current during secure key generation. The body effect of PMOS transistors, ambient temperatures, and CMOS process variations are investigated to examine the uniqueness and reliability of the proposed work. The proposed adiabatic PUF is simulated using 0.18 µm CMOS process technology with a supply voltage of 1.8 V. The uniqueness and reliability of the proposed adiabatic PUF are 49.82% and 99.47%, respectively. In addition, it requires a start-up power of 0.47 µW and consumes an energy of 15.98 fJ/bit/cycle at the reference temperature of 27 °C.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950172
Author(s):  
Mehdi Bandali ◽  
Alireza Hassanzadeh ◽  
Masoume Ghashghaie ◽  
Omid Hashemipour

In this paper, an 8-bit ultra-low-power, low-voltage current steering digital-to-analog converter (DAC) is presented. The proposed DAC employs a new segmented structure that results in low integral nonlinearity (INL) and high spurious-free dynamic range (SFDR). Moreover, this DAC utilizes a low-voltage current cell. The low-voltage characteristic of the current cell is achieved by connecting the body of MOSFET switches to their sources. Utilizing a low supply voltage along with a low bias current in the current cells results in about 623.81-[Formula: see text]W power consumption in 140-MS/s sample rate, which is very small compared to previous reports. The post-layout simulation results in 180-nm CMOS technology and [Formula: see text]-V supply voltage with the sample rate of 140[Formula: see text]MS/s show SFDR [Formula: see text] 64.37[Formula: see text]dB in the Nyquist range. The differential nonlinearity (DNL) and INL of the presented DAC are 0.1254 LSB and 0.1491 LSB, respectively.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


Author(s):  
Kavyashree P. ◽  
Siva S. Yellampalli

In this chapter, an ultra low power CMOS Common Gate LNA (CGLNA) with a Capacitive Cross-Coupled (CCC) gm boosting scheme is designed and analysed. The technique described has been employed in literature to reduce the Noise Figure (NF) and power dissipation. In this work we have extended the concept for low voltage operation along with improving NF and also for significant reduction in current consumption. A gm boosted CCC-CGLNA is implemented in 90nm CMOS technology. It has a gain of 9.9dB and a noise figure of 0.87dB at 2.4GHz ISM band and consumes less power (0.5mw) from 0.6V supply voltage. The designed gm boosted CCC-CGLNA is suitable for low power application in CMOS technologies.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 183-192
Author(s):  
Muhammad Yasir Faheem ◽  
Shun'an Zhong ◽  
Xinghua Wang ◽  
Muhammad Basit Azeem

Purpose Successive approximation register (SAR) analogue to digital converter (ADC) is well-known with regard to low-power operations. To make it energy-efficient and time-efficient, scientists are working for the last two decades, and it still needs the attention of the researchers. In actual work, there is no mechanism and circuitry for the production of two simultaneous comparator outputs in SAR ADC. Design/methodology/approach A small-sized, low-power and energy-efficient circuitry of a dual comparator and an amplifier is presented, which is the most important part of SAR ADC. The main idea is to design a multi-dimensional circuit which can deliver two quick parallel comparisons. The circuitry of the three devices is combined and miniaturized by introducing a lower number of MOSFET’s and small-sized capacitors in such a way that there is no need for any matching and calibration. Findings The supply voltage of the proposed comparator is 0.7 V with the overall power consumption of 0.257mW. The input and clock frequencies are 5 and 50 MHz, respectively. There is no requirement for any offset calibration and mismatching concerns due to sharing and centralization of spider-latch circuitry. The total offset voltages are 0.13 0.31 mV with 0.3VDD to VDD. All the components are small-sized and miniaturized to make the circuit cost-effective and energy-efficient. The rise and response time of comparator is around 100 ns. SNDR improved from 56 to 65 dB where the input-referred noise of an amplifier is 98mVrms. Originality/value The proposed design has no linear-complexity compared with the conventional comparator in both modes (working and standby); it is ultimately intended and designed for 11-bit SAR ADC. The circuit based on three rapid clock pulses for three different modes includes amplification and two parallel comparisons controlled and switched by a latch named as “spider-latch”.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 765 ◽  
Author(s):  
Leila Safari ◽  
Gianluca Barile ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

In this paper, a new low-voltage low-power dual-mode universal filter is presented. The proposed circuit is implemented using inverting current buffer (I-CB) and second-generation voltage conveyors (VCIIs) as active building blocks and five resistors and three capacitors as passive elements. The circuit is in single-input multiple-output (SIMO) structure and can produce second-order high-pass (HP), band-pass (BP), low-pass (LP), all-pass (AP), and band-stop (BS) transfer functions. The outputs are available as voltage signals at low impedance Z ports of the VCII. The HP, BP, AP, and BS outputs are also produced in the form of current signals at high impedance X ports of the VCIIs. In addition, the AP and BS outputs are also available in inverting type. The proposed circuit enjoys a dual-mode operation and, based on the application, the input signal can be either current or voltage. It is worth mentioning that the proposed filter does not require any component matching constraint and all sensitivities are low, moreover it can be easily cascadable. The simulation results using 0.18 μm CMOS technology parameters at a supply voltage of ±0.9 V are provided to support the presented theory.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


Author(s):  
P.A. Gowri Sankar ◽  
G. Sathiyabama

The continuous scaling down of metal-oxide-semiconductor field effect transistors (MOSFETs) led to the considerable impact in the analog-digital mixed signal integrated circuit design for system-on-chips (SoCs) application. SoCs trends force ADCs to be integrated on the chip with other digital circuits. These trends present new challenges in ADC circuit design based on existing CMOS technology. In this paper, we have designed and analyzed a 3-bit high speed, low-voltage and low-power flash ADC at 32nm CNFET technology for SoC applications. The proposed ADC utilizes the Threshold Inverter Quantization (TIQ) technique that uses two cascaded carbon nanotube field effect transistor (CNFET) inverters as a comparator. The TIQ technique proposed has been developed for better implementation in SoC applications. The performance of the proposed ADC is studied using two different types of encoders such as ROM and Fat tree encoders. The proposed ADCs circuits are simulated using Synopsys HSPICE with standard 32nm CNFET model at 0.9 input supply voltage. The simulation results show that the proposed 3 bit TIQ technique based flash ADC with fat tree encoder operates up to 8 giga samples per second (GSPS) with 35.88µW power consumption. From the simulation results, we observed that the proposed TIQ flash ADC achieves high speed, small size, low power consumption, and low voltage operation compared to other low power CMOS technology based flash ADCs. The proposed method is sensitive to process, temperature and power supply voltage variations and their impact on the ADC performance is also investigated.


Sign in / Sign up

Export Citation Format

Share Document