scholarly journals Fusion of Infrared and Visible Images Using Fast Global Smoothing Decomposition and Target-Enhanced Parallel Gaussian Fuzzy Logic

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 40
Author(s):  
Chaowei Duan ◽  
Changda Xing ◽  
Yiliu Liu ◽  
Zhisheng Wang

As a powerful technique to merge complementary information of original images, infrared (IR) and visible image fusion approaches are widely used in surveillance, target detecting, tracking, and biological recognition, etc. In this paper, an efficient IR and visible image fusion method is proposed to simultaneously enhance the significant targets/regions in all source images and preserve rich background details in visible images. The multi-scale representation based on the fast global smoother is firstly used to decompose source images into the base and detail layers, aiming to extract the salient structure information and suppress the halos around the edges. Then, a target-enhanced parallel Gaussian fuzzy logic-based fusion rule is proposed to merge the base layers, which can avoid the brightness loss and highlight significant targets/regions. In addition, the visual saliency map-based fusion rule is designed to merge the detail layers with the purpose of obtaining rich details. Finally, the fused image is reconstructed. Extensive experiments are conducted on 21 image pairs and a Nato-camp sequence (32 image pairs) to verify the effectiveness and superiority of the proposed method. Compared with several state-of-the-art methods, experimental results demonstrate that the proposed method can achieve more competitive or superior performances according to both the visual results and objective evaluation.

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Chaowei Duan ◽  
Yiliu Liu ◽  
Changda Xing ◽  
Zhisheng Wang

An efficient method for the infrared and visible image fusion is presented using truncated Huber penalty function smoothing and visual saliency based threshold optimization. The method merges complementary information from multimodality source images into a more informative composite image in two-scale domain, in which the significant objects/regions are highlighted and rich feature information is preserved. Firstly, source images are decomposed into two-scale image representations, namely, the approximate and residual layers, using truncated Huber penalty function smoothing. Benefiting from the edge- and structure-preserving characteristics, the significant objects and regions in the source images are effectively extracted without halo artifacts around the edges. Secondly, a visual saliency based threshold optimization fusion rule is designed to fuse the approximate layers aiming to highlight the salient targets in infrared images and remain the high-intensity regions in visible images. The sparse representation based fusion rule is adopted to fuse the residual layers with the goal of acquiring rich detail texture information. Finally, combining the fused approximate and residual layers reconstructs the fused image with more natural visual effects. Sufficient experimental results demonstrate that the proposed method can achieve comparable or superior performances compared with several state-of-the-art fusion methods in visual results and objective assessments.


2020 ◽  
Vol 8 (6) ◽  
pp. 1525-1529

Image fusion is the process of coalescence of two or more images of the same scene taken from different sensors to produce a composite image with rich details. Due to the progression of infrared (IR) and Visible (VI) image fusion and its ever-growing demands it led to an algorithmic development of image fusion in the last several years. The two modalities have to be integrated altogether with the necessary information to form a single image. In this article, a novel image fusion algorithm has been introduced with the combination of bilateral, Robert filters as method I and moving average, bilateral filter as method II to fuse infrared and visible images. The proposed algorithm follows double - scale decomposition by using average filer and the detail information is obtained by subtracting it from the source image. Smooth and detail weights of the source images are obtained by using the two methods mentioned above. Then a weight based fusion rule is used to amalgamate the source image information into a single image. Performances of both methods are compared both qualitatively and quantitatively. Experimental results provide better results for method I compared to method II.


Author(s):  
Cheng Zhao ◽  
Yongdong Huang

The rolling guidance filtering (RGF) has a good characteristic which can smooth texture and preserve the edges, and non-subsampled shearlet transform (NSST) has the features of translation invariance and direction selection based on which a new infrared and visible image fusion method is proposed. Firstly, the rolling guidance filter is used to decompose infrared and visible images into the base and detail layers. Then, the NSST is utilized on the base layer to get the high-frequency coefficients and low-frequency coefficients. The fusion of low-frequency coefficients uses visual saliency map as a fusion rule, and the coefficients of the high-frequency subbands use gradient domain guided filtering (GDGF) and improved Laplacian sum to fuse coefficients. Finally, the fusion of the detail layers combines phase congruency and gradient domain guided filtering as the fusion rule. As a result, the proposed method can not only extract the infrared targets, but also fully preserves the background information of the visible images. Experimental results indicate that our method can achieve a superior performance compared with other fusion methods in both subjective and objective assessments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Yan ◽  
Qun Hao ◽  
Jie Cao ◽  
Rizvi Saad ◽  
Kun Li ◽  
...  

AbstractImage fusion integrates information from multiple images (of the same scene) to generate a (more informative) composite image suitable for human and computer vision perception. The method based on multiscale decomposition is one of the commonly fusion methods. In this study, a new fusion framework based on the octave Gaussian pyramid principle is proposed. In comparison with conventional multiscale decomposition, the proposed octave Gaussian pyramid framework retrieves more information by decomposing an image into two scale spaces (octave and interval spaces). Different from traditional multiscale decomposition with one set of detail and base layers, the proposed method decomposes an image into multiple sets of detail and base layers, and it efficiently retains high- and low-frequency information from the original image. The qualitative and quantitative comparison with five existing methods (on publicly available image databases) demonstrate that the proposed method has better visual effects and scores the highest in objective evaluation.


2013 ◽  
Vol 411-414 ◽  
pp. 1362-1367 ◽  
Author(s):  
Qing Lan Wei ◽  
Yuan Zhang

This paper presents the thoughts about application of saliency map to the video objective quality evaluation system. It computes the SMSE and SPSNR values as the objective assessment scores according to the saliency map, and compares with conditional objective evaluation methods as PSNR and MSE. Experimental results demonstrate that this method can well fit the subjective assessment results.


Author(s):  
Girraj Prasad Rathor ◽  
Sanjeev Kumar Gupta

Image fusion based on different wavelet transform is the most commonly used image fusion method, which fuses the source pictures data in wavelet space as per some fusion rules. But, because of the uncertainties of the source images contributions to the fused image, to design a good fusion rule to incorporate however much data as could reasonably be expected into the fused picture turns into the most vital issue. On the other hand, adaptive fuzzy logic is the ideal approach to determine uncertain issues, yet it has not been utilized as a part of the outline of fusion rule. A new fusion technique based on wavelet transform and adaptive fuzzy logic is introduced in this chapter. After doing wavelet transform to source images, it computes the weight of each source images coefficients through adaptive fuzzy logic and then fuses the coefficients through weighted averaging with the processed weights to acquire a combined picture: Mutual Information, Peak Signal to Noise Ratio, and Mean Square Error as criterion.


Sign in / Sign up

Export Citation Format

Share Document