scholarly journals Active Model-Based Hysteresis Compensation and Tracking Control of Pneumatic Artificial Muscle

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 364
Author(s):  
Yanding Qin ◽  
Haoqi Zhang ◽  
Xiangyu Wang ◽  
Jianda Han

The hysteretic nonlinearity of pneumatic artificial muscle (PAM) is the main factor that degrades its tracking accuracy. This paper proposes an efficient hysteresis compensation method based on the active modeling control (AMC). Firstly, the Bouc–Wen model is adopted as the reference model to describe the hysteresis of the PAM. Secondly, the modeling errors are introduced into the reference model, and the unscented Kalman filter is used to estimate the state of the system and the modeling errors. Finally, a hysteresis compensation strategy is designed based on AMC. The compensation performances of the nominal controller with without AMC were experimentally tested on a PAM. The experimental results show that the proposed controller is more robust when tracking different types of trajectories. In the transient, both the overshoot and oscillation can be successfully attenuated, and fast convergence is achieved. In the steady-state, the proposed controller is more robust against external disturbances and measurement noise. The proposed controller is effective and robust in hysteresis compensation, thus improving the tracking performance of the PAM.

Mechatronics ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 402-414 ◽  
Author(s):  
Tri Vo Minh ◽  
Tegoeh Tjahjowidodo ◽  
Herman Ramon ◽  
Hendrik Van Brussel

2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


Sign in / Sign up

Export Citation Format

Share Document