scholarly journals Dynamic Scheduling of Contextually Categorised Internet of Things Services in Fog Computing Environment

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 465
Author(s):  
Petar Krivic ◽  
Mario Kusek ◽  
Igor Cavrak ◽  
Pavle Skocir

Fog computing emerged as a concept that responds to the requirements of upcoming solutions requiring optimizations primarily in the context of the following QoS parameters: latency, throughput, reliability, security, and network traffic reduction. The rapid development of local computing devices and container-based virtualization enabled the application of fog computing within the IoT environment. However, it is necessary to utilize algorithm-based service scheduling that considers the targeted QoS parameters to optimize the service performance and reach the potential of the fog computing concept. In this paper, we first describe our categorization of IoT services that affects the execution of our scheduling algorithm. Secondly, we propose our scheduling algorithm that considers the context of processing devices, user context, and service context to determine the optimal schedule for the execution of service components across the distributed fog-to-cloud environment. The conducted simulations confirmed the performance of the proposed algorithm and showcased its major contribution—dynamic scheduling, i.e., the responsiveness to the volatile QoS parameters due to changeable network conditions. Thus, we successfully demonstrated that our dynamic scheduling algorithm enhances the efficiency of service performance based on the targeted QoS criteria of the specific service scenario.

2013 ◽  
Vol 33 (3) ◽  
pp. 862-865
Author(s):  
Shuangzhi DU ◽  
Yong WANG ◽  
Xiaoling TAO

2020 ◽  
Vol 53 (2) ◽  
pp. 15041-15046
Author(s):  
Ala Din Trabelsi ◽  
Hend Marouane ◽  
Emna Bouhamed ◽  
Faouzi Zarai

2021 ◽  
Vol 21 (3) ◽  
pp. 1-33
Author(s):  
Qianmu Li ◽  
Shunmei Meng ◽  
Xiaonan Sang ◽  
Hanrui Zhang ◽  
Shoujin Wang ◽  
...  

Volunteer computing uses computers volunteered by the general public to do distributed scientific computing. Volunteer computing is being used in high-energy physics, molecular biology, medicine, astrophysics, climate study, and other areas. These projects have attained unprecedented computing power. However, with the development of information technology, the traditional defense system cannot deal with the unknown security problems of volunteer computing . At the same time, Cyber Mimic Defense (CMD) can defend the unknown attack behavior through its three characteristics: dynamic, heterogeneous, and redundant. As an important part of the CMD, the dynamic scheduling algorithm realizes the dynamic change of the service centralized executor, which can enusre the security and reliability of CMD of volunteer computing . Aiming at the problems of passive scheduling and large scheduling granularity existing in the existing scheduling algorithms, this article first proposes a scheduling algorithm based on time threshold and task threshold and realizes the dynamic randomness of mimic defense from two different dimensions; finally, combining time threshold and random threshold, a dynamic scheduling algorithm based on multi-level queue is proposed. The experiment shows that the dynamic scheduling algorithm based on multi-level queue can take both security and reliability into account, has better dynamic heterogeneous redundancy characteristics, and can effectively prevent the transformation rule of heterogeneous executors from being mastered by attackers.


2012 ◽  
Vol 271-272 ◽  
pp. 650-656
Author(s):  
Zhi Bing Lu ◽  
Ai Min Wang ◽  
Cheng Tong Tang ◽  
Jing Sheng Li

For the rapid response to production scheduling problem driven by high-density production tasks, a dynamic scheduling technology for the large precision strip products assembly with a mixture of task time nodes and line-rail space is proposed. A scheduling constrained model containing coverage, proximity, timeliness and resource is established. A linear rail space production scheduling technology using heuristic automatic scheduling and event-driven method is put forward. The time rule based on delivery and single completion assembly is formed, at the same time the space rule based on the adjacent rail and comprehensive utilization is researched. Supposing the privilege of single product assembling as the core, the scheduling parts filter method based on multiple constraints and former rules. For the space layout problem, a clingy forward and backward algorithms is proposed to judge the assemble position regarding the space comprehensive utilization rate. The classification of the various disturbances in the actual production is summarized. Three basic algorithms are proposed, including insertion, moving and re-scheduling algorithm, in order to solve the assembly dynamic scheduling problem driven by production disturbance events. Finally, take rocket as the example, the rocket assembly space production scheduling system is developed, combining with the proposed algorithm. The practicability of the system is validated using real data.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Wang ◽  
Yuanyuan Cai ◽  
Junsong Fu ◽  
Jie Xu

The rapid development of Internet of Medical Things (IoMT) is remarkable. However, IoMT faces many problems including privacy disclosure, long delay of service orders, low retrieval efficiency of medical data, and high energy cost of fog computing. For these, this paper proposes a data privacy protection and efficient retrieval scheme for IoMT based on low-cost fog computing. First, a fog computing system is located between a cloud server and medical workers, for processing data retrieval requests of medical workers and orders for controlling medical devices. Simultaneously, it preprocesses physiological data of patients uploaded by IoMT, collates them into various data sets, and transmits them to medical institutions in this way. It makes the entire execution process of low latency and efficient. Second, multidimensional physiological data are of great value, and we use ciphertext retrieval to protect privacy of patient data in this paper. In addition, this paper uses range tree to build an index for storing physiological data vectors, and meanwhile a range retrieval method is also proposed to improve data search efficiency. Finally, bat algorithm (BA) is designed to allocate cost on a fog server group for significant energy cost reduction. Extensive experiments are conducted to demonstrate the efficiency of the proposed scheme.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6660
Author(s):  
Lihao Liu ◽  
Zhenghong Dong ◽  
Haoxiang Su ◽  
Dingzhan Yu

While monolithic giant earth observation satellites still have obvious advantages in regularity and accuracy, distributed satellite systems are providing increased flexibility, enhanced robustness, and improved responsiveness to structural and environmental changes. Due to increased system size and more complex applications, traditional centralized methods have difficulty in integrated management and rapid response needs of distributed systems. Aiming to efficient missions scheduling in distributed earth observation satellite systems, this paper addresses the problem through a networked game model based on a game-negotiation mechanism. In this model, each satellite is viewed as a “rational” player who continuously updates its own “action” through cooperation with neighbors until a Nash Equilibria is reached. To handle static and dynamic scheduling problems while cooperating with a distributed mission scheduling algorithm, we present an adaptive particle swarm optimization algorithm and adaptive tabu-search algorithm, respectively. Experimental results show that the proposed method can flexibly handle situations of different scales in static scheduling, and the performance of the algorithm will not decrease significantly as the problem scale increases; dynamic scheduling can be well accomplished with high observation payoff while maintaining the stability of the initial plan, which demonstrates the advantages of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document