scholarly journals Game Theory-Based Energy-Efficient Clustering Algorithm for Wireless Sensor Networks

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 478
Author(s):  
Xiao Yan ◽  
Cheng Huang ◽  
Jianyuan Gan ◽  
Xiaobei Wu

Energy efficiency is one of the critical challenges in wireless sensor networks (WSNs). WSNs collect and transmit data through sensor nodes. However, the energy carried by the sensor nodes is limited. The sensor nodes need to save energy as much as possible to prolong the network lifetime. This paper proposes a game theory-based energy-efficient clustering algorithm (GEC) for wireless sensor networks, where each sensor node is regarded as a player in the game. According to the length of idle listening time in the active state, the sensor node can adopt favorable strategies for itself, and then decide whether to sleep or not. In order to avoid the selfish behavior of sensor nodes, a penalty mechanism is introduced to force the sensor nodes to adopt cooperative strategies in future operations. The simulation results show that the use of game theory can effectively save the energy consumption of the sensor network and increase the amount of network data transmission, so as to achieve the purpose of prolonging the network lifetime.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
B. Baranidharan ◽  
B. Santhi

Clustering the Wireless Sensor Networks (WSNs) is the major issue which determines the lifetime of the network. The parameters chosen for clustering should be appropriate to form the clusters according to the need of the applications. Some of the well-known clustering techniques in WSN are designed only to reduce overall energy consumption in the network and increase the network lifetime. These algorithms achieve increased lifetime, but at the cost of overloading individual sensor nodes. Load balancing among the nodes in the network is also equally important in achieving increased lifetime. First Node Die (FND), Half Node Die (HND), and Last Node Die (LND) are the different metrics for analysing lifetime of the network. In this paper, a new clustering algorithm, Genetic Algorithm based Energy efficient Clustering Hierarchy (GAECH) algorithm, is proposed to increase FND, HND, and LND with a novel fitness function. The fitness function in GAECH forms well-balanced clusters considering the core parameters of a cluster, which again increases both the stability period and lifetime of the network. The experimental results also clearly indicate better performance of GAECH over other algorithms in all the necessary aspects.


Author(s):  
Eyad Taqieddin ◽  
Moad Mowafi ◽  
Fahed Awad ◽  
Omar Banimelhem ◽  
Hani Maher

This paper proposes a novel energy-efficient clustering protocol for wireless sensor networks. It combines the benefits of using the k-means clustering algorithm with the, recently developed, LEACH with virtual forces (LEACH-VF) protocol. In this work, the k-means algorithm is employed to determine k centroids around which the clusters will be formed. After that, the virtual field force method is applied to these clusters to determine the most suitable positions for each node. The main target of such an approach is to improve the energy balance in the network and to extend the network lifetime. Simulation results show that the proposed protocol extends the time before the first node death, minimizes the variance of the average node energy, and reduces the distance that the sensor nodes travel within their respective clusters.


2015 ◽  
Vol 15 (3) ◽  
pp. 554
Author(s):  
Y. Chalapathi Rao ◽  
Ch. Santhi Rani

<p>Wireless Sensor Networks (WSNs) consist of a large quantity of small and low cost sensor nodes powered by small non rechargeable batteries and furnish with various sensing devices. The cluster-based technique is one of the good perspectives to reduce energy consumption in WSNs. The lifetime of WSNs is maximized by using the uniform cluster location and balancing the network loading between the clusters. We have reviewed various energy efficient schemes apply in WSNs of which we concerted on clustering approach. So, in this paper we have discussed about few existing energy efficient clustering techniques and proposed an Energy Aware Sleep Scheduling Routing (EASSR) scheme for WSN in which some nodes are usually put to sleep to conserve energy, and this helps to prolong the network lifetime. EASSR selects a node as a cluster head if its residual energy is more than system average energy and have low energy consumption rate in existing round. The efforts of this scheme are, increase of network stability period, and minimize loss of sensed data. Performance analysis and compared statistic results show that EASSR has significant improvement over existing methods in terms of energy consumption, network lifetime and data units gathered at BS.</p>


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
Surender Soni ◽  
Vivek Katiyar ◽  
Narottam Chand

Wireless Sensor Networks (WSNs) are generally believed to be homogeneous, but some sensor nodes of higher energy can be used to prolong the lifetime and reliability of WSNs. This gives birth to the concept of Heterogeneous Wireless Sensor Networks (HWSNs). Clustering is an important technique to prolong the lifetime of WSNs and to reduce energy consumption as well, by topology management and routing. HWSNs are popular in real deployments (Corchado et al., 2010), and have a large area of coverage. In such scenarios, for better connectivity, the need for multilevel clustering protocols arises. In this paper, the authors propose an energy-efficient protocol called heterogeneous multilevel clustering and aggregation (HMCA) for HWSNs. HMCA is simulated and compared with existing multilevel clustering protocol EEMC (Jin et al., 2008) for homogeneous WSN. Simulation results demonstrate that the proposed protocol performs better.


Sign in / Sign up

Export Citation Format

Share Document