scholarly journals Design and Implementation of Charge Pump Phase-Locked Loop Frequency Source Based on GaAs pHEMT Process

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 504
Author(s):  
Ranran Zhao ◽  
Yuming Zhang ◽  
Hongliang Lv ◽  
Yue Wu

This paper realized a charge pump phase locked loop (CPPLL) frequency source circuit based on 0.15 μm Win GaAs pHEMT process. In this paper, an improved fully differential edge-triggered frequency discriminator (PFD) and an improved differential structure charge pump (CP) are proposed respectively. In addition, a low noise voltage-controlled oscillator (VCO) and a static 64:1 frequency divider is realized. Finally, the phase locked loop (PLL) is realized by cascading each module. Measurement results show that the output signal frequency of the proposed CPPLL is 3.584 GHz–4.021 GHz, the phase noise at the frequency offset of 1 MHz is −117.82 dBc/Hz, and the maximum output power is 4.34 dBm. The chip area is 2701 μm × 3381 μm, and the power consumption is 181 mw.

2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.


2010 ◽  
Vol 2 (1) ◽  
pp. 54-58
Author(s):  
Jevgenij Charlamov

In the article the architecture of a charge pump phase locked loop is shown. The influence on overall system performance of its functional blocks is discussed. Voltage controlled oscillator phase noise analysis is done and the relationship between a charge pump phase locked loop and voltage controlled oscillator phase noises are determined. The requirements and results of the accomplished design are discussed. Area of chip PLL – 150×250 μm2, power consumption – 10 mW and phase noise is –125 dBc/Hz with 1 MHz deviation from central 670 MHz frequency.


1977 ◽  
Vol 32 (12) ◽  
pp. 1503-1505 ◽  
Author(s):  
Tai-chiung Hsieh ◽  
Wolfgang Knauer ◽  
Uwe Penning

Abstract Realization of low Noise 441,6 nm He-Cd-Lasers by Modulation of the Discharge Current A simple method to stabilize the laser light of a 441,6 nm He-Cd-laser at maximum output power is presented. Experiments show that a strong reduction of the fluctuations in the laser output can be achieved by a modulation of the discharge current at specific frequencies in the 100 kHz-range. This also leads to an increase in output power by 10-25 per cent as compared to the unmodulated laser.


2011 ◽  
Vol 16 (4) ◽  
pp. 66-72
Author(s):  
V.Sh. Melikyan ◽  
A.A. Durgaryan ◽  
H.P. Petrosyan ◽  
A.G. Stepanyan

A power and noise efficient solution for phase locked loop (PLL) is presented. A lock detector is implemented to deactivate the PLL components, except the voltage controlled oscillator (VCO), in the locked state. Signals deactivating/activating the PLL are discussed on system level. The introduced technique significantly saves power and decreases PLL output jitter. As a result whole PLL power consumption and output noise decreased about 35-38% in expense of approximately 17% area overhead


2021 ◽  
Vol 11 (24) ◽  
pp. 12095
Author(s):  
Woosuk Sung ◽  
Yong-Gu Park

This paper describes our best practices related to hybrid power system (HPS) development with a focus on the prototyping phase. Based on the main development goals of our security robot, 24 h continuous operation on a single charge as a top priority, the HPS specifications were developed in the previous phase. For long-duration missions, batteries are hybridized with hydrogen fuel cells. By hybridization, the practical issues of fuel cells can be addressed such as lack of durability and low power density. With the developed specifications of the HPS, its components were acquired and installed to build a prototype. Using an electronic load coupled with a charge-discharge system controller, the constructed prototype was tested, discovering the maximum output power (850 W) that the fuel cell can sustain for 24 h. To further increase the energy density of the HPS, its structure was converted to a plug-in hybrid. With the developed HPS simulator, the converted HPS was simulated, predicting an extended hours of operation (2.07 h) based on the larger battery (7S12P) over the widest SOC window (90%). The plug-in HPS prototype was integrated into the security robot. On a dedicated chassis dynamometer, the integrated prototype was tested, demonstrating its capability to continuously operate the security robot for 24 h.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 81
Author(s):  
Prithiviraj R ◽  
Selvakumar J

Design of Phase Locked Loop (PLL) plays a vital role in transceiver field. Phase Locked Loop comprises of three blocks, namely Phase and frequency detector, loop filter and voltage-controlled oscillator. The greater advancements in CMOS technology such as high frequency, high speed, low noise and phase error leads to low-cost PLL This work aims to develop higher order non-linear models of general Phase Locked Loop. The condition of stability and choice of loop filter is also determined. Based on the analysis, the transfer function for PLL is determined.  


2018 ◽  
pp. 6-12 ◽  
Author(s):  
R. V. Magerramov

This article describes the method of converting an analog signal into a digital code using a phase locked loop (PLL) circuit. The functional structure of the voltage-to-digital conversion circuit is considered. The application of the principle of phase-locked loop for controlling the duty cycle of the output signal of a phase detector when the voltage at the positive input of the operational amplifier included in the low-pass filter is investigated. In the modern world, analog-to-digital converters (ADCs) are available in almost every electronic device. The application of different ADC architectures is determined by their parameters and features by circuit and technological implementation. The phase-locked loop with a digital part (16-bit counter, storage register and data transfer interface) allows to obtain a precision analog-to-digital converter, based on a relatively simple circuit design, which has high accuracy and low noise level. Negative feedback of the PLL loop makes it possible to level the error of the passive elements of the low-pass filter (LPF) and the voltage controlled oscillator (VCO). The result of this work is an analysis of the ADC characteristics in the technological basis of 250 nm.


2019 ◽  
Vol 9 (3) ◽  
pp. 24 ◽  
Author(s):  
Naheem Olakunle Adesina ◽  
Ashok Srivastava

The main challenge in designing a loop filter for a phase locked loop (PLL) is the physical dimensions of the passive elements used in the circuit that occupy large silicon area. In this paper, the basic features of a charge-controlled memristor are studied and the design procedures for various components of a PLL are examined. Following this, we propose a memristor-based filter design which has its resistance being replaced by a memristor in order to reduce the die area and achieve a low power consumption. We obtained a tuning range of 741–994 MHz, a stable output frequency of 1 GHz from the transfer characteristics of voltage-controlled oscillator (VCO), and an improved settling time. In addition to reduced power consumption and area occupied on the chip, our design shows a high reliability over wider range of temperature variations.


Sign in / Sign up

Export Citation Format

Share Document