scholarly journals Validating a Traffic Conflict Prediction Technique for Motorways Using a Simulation Approach

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 566
Author(s):  
Nicolette Formosa ◽  
Mohammed Quddus ◽  
Alkis Papadoulis ◽  
Andrew Timmis

With the ever-increasing advancements in the technology of driver assistant systems, there is a need for a comprehensive way to identify traffic conflicts to avoid collisions. Although significant research efforts have been devoted to traffic conflict techniques applied for junctions, there is dearth of research on these methods for motorways. This paper presents the validation of a traffic conflict prediction algorithm applied to a motorway scenario in a simulated environment. An automatic video analysis system was developed to identify lane change and rear-end conflicts as ground truth. Using these conflicts, the prediction ability of the traffic conflict technique was validated in an integrated simulation framework. This framework consisted of a sub-microscopic simulator, which provided an appropriate testbed to accurately simulate the components of an intelligent vehicle, and a microscopic traffic simulator able to generate the surrounding traffic. Results from this framework show that for a 10% false alarm rate, approximately 80% and 73% of rear-end and lane change conflicts were accurately predicted, respectively. Despite the fact that the algorithm was not trained using the virtual data, the sensitivity was high. This highlights the transferability of the algorithm to similar road networks, providing a benchmark for the identification of traffic conflict and a relevant step for developing safety management strategies for autonomous vehicles.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1523
Author(s):  
Nikita Smirnov ◽  
Yuzhou Liu ◽  
Aso Validi ◽  
Walter Morales-Alvarez ◽  
Cristina Olaverri-Monreal

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.


Author(s):  
Kangqiang Ouyang ◽  
Yong Wang ◽  
Yanqiang Li ◽  
Yunhai Zhu

2021 ◽  
Vol 13 (16) ◽  
pp. 9278
Author(s):  
Ruoxi Jiang ◽  
Shunying Zhu ◽  
Hongguang Chang ◽  
Jingan Wu ◽  
Naikan Ding ◽  
...  

Currently, several traffic conflict indicators are used as surrogate safety measures. Each indicator has its own advantages, limitations, and suitability. There are only a few studies focusing on fixed object conflicts of highway safety estimation using traffic conflict technique. This study investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle trajectory data outputted from recognition of the videos were used to acquire conflict data following the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on the advantages and limitations of the conventional indicators. This indicator contained definitions and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object). Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show that the average value of the correlation coefficient for each indicator with different thresholds are 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously higher than the other three conventional indicators. The findings of this study suggest TTC often fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when the speed of the following vehicle is slower than the leading vehicle, and PET is less informative than other indicators. At the same time, these conventional indicators do not consider the vehicle-fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest correlation. More data are needed to verify and support the study.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3679
Author(s):  
Lisardo Prieto González ◽  
Susana Sanz Sánchez ◽  
Javier Garcia-Guzman ◽  
María Jesús L. Boada ◽  
Beatriz L. Boada

Presently, autonomous vehicles are on the rise and are expected to be on the roads in the coming years. In this sense, it becomes necessary to have adequate knowledge about its states to design controllers capable of providing adequate performance in all driving scenarios. Sideslip and roll angles are critical parameters in vehicular lateral stability. The later has a high impact on vehicles with an elevated center of gravity, such as trucks, buses, and industrial vehicles, among others, as they are prone to rollover. Due to the high cost of the current sensors used to measure these angles directly, much of the research is focused on estimating them. One of the drawbacks is that vehicles are strong non-linear systems that require specific methods able to tackle this feature. The evolution in Artificial Intelligence models, such as the complex Artificial Neural Network architectures that compose the Deep Learning paradigm, has shown to provide excellent performance for complex and non-linear control problems. In this paper, the authors propose an inexpensive but powerful model based on Deep Learning to estimate the roll and sideslip angles simultaneously in mass production vehicles. The model uses input signals which can be obtained directly from onboard vehicle sensors such as the longitudinal and lateral accelerations, steering angle and roll and yaw rates. The model was trained using hundreds of thousands of data provided by Trucksim® and validated using data captured from real driving maneuvers using a calibrated ground truth device such as VBOX3i dual-antenna GPS from Racelogic®. The use of both Trucksim® software and the VBOX measuring equipment is recognized and widely used in the automotive sector, providing robust data for the research shown in this article.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5443
Author(s):  
Hongyu Hu ◽  
Ziyang Lu ◽  
Qi Wang ◽  
Chengyuan Zheng

Changing lanes while driving requires coordinating the lateral and longitudinal controls of a vehicle, considering its running state and the surrounding environment. Although the existing rule-based automated lane-changing method is simple, it is unsuitable for unpredictable scenarios encountered in practice. Therefore, using a deep deterministic policy gradient (DDPG) algorithm, we propose an end-to-end method for automated lane changing based on lidar data. The distance state information of the lane boundary and the surrounding vehicles obtained by the agent in a simulation environment is denoted as the state space for an automated lane-change problem based on reinforcement learning. The steering wheel angle and longitudinal acceleration are used as the action space, and both the state and action spaces are continuous. In terms of the reward function, avoiding collision and setting different expected lane-changing distances that represent different driving styles are considered for security, and the angular velocity of the steering wheel and jerk are considered for comfort. The minimum speed limit for lane changing and the control of the agent for a quick lane change are considered for efficiency. For a one-way two-lane road, a visual simulation environment scene is constructed using Pyglet. By comparing the lane-changing process tracks of two driving styles in a simplified traffic flow scene, we study the influence of driving style on the lane-changing process and lane-changing time. Through the training and adjustment of the combined lateral and longitudinal control of autonomous vehicles with different driving styles in complex traffic scenes, the vehicles could complete a series of driving tasks while considering driving-style differences. The experimental results show that autonomous vehicles can reflect the differences in the driving styles at the time of lane change at the same speed. Under the combined lateral and longitudinal control, the autonomous vehicles exhibit good robustness to different speeds and traffic density in different road sections. Thus, autonomous vehicles trained using the proposed method can learn an automated lane-changing policy while considering safety, comfort, and efficiency.


Author(s):  
Ishtiak Ahmed ◽  
Alan Karr ◽  
Nagui M. Rouphail ◽  
Gyounghoon Chun ◽  
Shams Tanvir

With the expected increase in the availability of trajectory-level information from connected and autonomous vehicles, issues of lane changing behavior that were difficult to assess with traditional freeway detection systems can now begin to be addressed. This study presents the development and application of a lane change detection algorithm that uses trajectory data from a low-cost GPS-equipped fleet, supplemented with digitized lane markings. The proposed algorithm minimizes the effect of GPS errors by constraining the temporal duration and lateral displacement of a lane change detected using preliminary lane positioning. The algorithm was applied to 637 naturalistic trajectories traversing a long weaving segment and validated through a series of controlled lane change experiments. Analysis of naturalistic trajectory data revealed that ramp-to-freeway trips had the highest number of discretionary lane changes in excess of 1 lane change/vehicle. Overall, excessive lane change rates were highest between the two middle freeway lanes at 0.86 lane changes/vehicle. These results indicate that extreme lane changing behavior may significantly contribute to the peak-hour congestion at the site. The average lateral speed during lane change was 2.7 fps, consistent with the literature, with several freeway–freeway and ramp–ramp trajectories showing speeds up to 7.7 fps. All ramp-to-freeway vehicles executed their first mandatory lane change within 62.5% of the total weaving length, although other weaving lane changes were spread over the entire segment. These findings can be useful for implementing strategies to lessen abrupt and excessive lane changes through better lane pre-positioning.


Sign in / Sign up

Export Citation Format

Share Document