scholarly journals Efficacy of Oregano Essential Oil Extract in the Inhibition of Bacterial Lipopolysaccharide (LPS)-Induced Osteoclastogenesis Using RAW 264.7 Murine Macrophage Cell Line—An In-Vitro Study

Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 240
Author(s):  
Krishnamachari Janani ◽  
Kavalipurapu Venkata Teja ◽  
Mohammad Khursheed Alam ◽  
Deepti Shrivastava ◽  
Azhar Iqbal ◽  
...  

Gram-negative, anaerobic bacterias are predominate in periapical infections. The bacterial lipopolysaccharide (LPS) initiates the process of inflammation and periapical bone resorption. Usage of various medicaments retards or inactivates the bacterial endotoxin (LPS). However, the results are not highly effective. In recent years, owing to antimicrobial resistance, the shift from conventional agents to herbal agents has been increased tremendously in research. Keeping this in mind, the present study was formulated to evaluate the efficacy of oregano essential oil in inhibiting bacterial LPS- induced osteoclastogenesis. Four different concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, and 100 ng/mL) of oregano essential oil extract were added into 96-well culture plate. Under light microscope, quantification of osteoclast cells was performed. One-way ANOVA with post-hoc Tukey test was carried out on SPSS v21. A significant reduction (p < 0.001) in the osteoclast was observed in the experimental groups compared to no oregano essential oil extract (control). A dose-dependent significant reduction (p < 0.001) in osteoclast formation was observed among the experimental groups, with lesser osteoclast seen in group IV with 100 ng/mL of oregano essential oil extract. Thus, it can be concluded that oregano essential oil extract can be utilized as a therapeutic agent that can target bacterial LPS-induced osteoclastogenesis. However, randomized controlled studies should be conducted to assess the potential use of this extract in the periapical bone resorption of endodontic origin.

2020 ◽  
Vol 10 (2-s) ◽  
pp. 125-139
Author(s):  
D Mutthuraj ◽  
T Vinutha ◽  
TS Gopenath ◽  
B Kaginelli ◽  
M Karthikeyan ◽  
...  

Herbal medicinal plants are used to treat various disorders in many traditional medicinal systems around the world. Usage of this herb found in Indian and Chinese medicinal systems. The availability of ginger herb is Universal these days, where it is cultivated for its underground stem (Pseudo-stem). Most commonly used part is rhizome. This  ginger rhizome has many therapeutic uses including anti-inflammatory, anti-diabetics, antioxidant, anti-microbial and also curing in vomiting, constipation, indigestion, cold, fever,cough, nausea, reparatory conditions, bronchitis  etc., these activities were checked using different solvents of different polarity. Arthritis is known for its extreme joint pain and swelling may be treated by using ginger essential oil extract. It was studied that it has the capacity to reducing the pro-inflammatory molecules by lowering the RA-F, CRP, ESR level in the blood.The essences of ginger are due to the chemicals present in them. The products obtained from the ginger like essential oil and oleoresin are used all around the world for its food and pharmaceutical properties.The bioactive compounds like [6]- gingerol and its dehydrated form [6]- shogaol can inhibits the production of free radicals and oxidative stress, along with this properties it can reduce the pro-inflammatory molecules like prostaglandins by inhibiting COX-1 and COX-2.It also observed by the recent studies that the ginger and its extract have the capacity of suppressing the leukotriene biosynthesis by inhibiting 5-lipoxygenase. To this effect in-vitro study conducted in the lab shows the maximum inhibition as well as maximum protection by the ginger essential oil extract. The essential oil extraction were administered external apply and the variation in the certain proteins and inflammation related antibodies were studied. Keywords:  Zingiber offcinale, Spice, Arthritis, Essential oil, Anti-Inflammatory, Gingerol, Shogaol, Auto-Immune Disorders.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Author(s):  
Ralf Krug ◽  
C. Ortmann ◽  
S. Reich ◽  
B. Hahn ◽  
G. Krastl ◽  
...  

Abstract Objectives To assess tooth discoloration induced by different hydraulic calcium silicate-based cements (HCSCs), including effects of blood and placement method. Materials and methods Eighty bovine teeth cut to a length of 18 mm (crown 8 mm, root 10 mm) were randomly assigned to 10 groups (n = 8), receiving orthograde apical plug treatment (APT). Apical plugs were 4 mm in length and made of ProRoot MTA (Dentsply), Medcem MTA (Medcem), TotalFill BC RRM Fast Set Putty (Brasseler), or Medcem Medical Portland Cement (Medcem) plus bismuth oxide (Bi2O3) with and without bovine blood. Further, orthograde (with or without preoperative adhesive coronal dentin sealing) and retrograde APT were compared. Teeth were obturated with gutta-percha and sealer, sealed with composite and stored in distilled water. Tooth color was measured on apical plug, gutta-percha/sealer, and crown surface before treatment versus 24 h, 1, 3, 6, 12, and 24 months after treatment by spectrophotometry. Color difference (ΔE) values were calculated and analyzed by Shapiro–Wilk test, ANOVA with post hoc tests, Friedman test, t test, and post hoc tests with Bonferroni correction (α = .05). Results Tooth discoloration occurred in all groups with no significant differences between HCSCs (p > .05). After 24 months, color changes were prominent on roots but insignificant on crowns. Blood contamination induced a significantly decreased luminescence (p < .05). Blood had a stronger impact on tooth color than Bi2O3. No relevant effects of retrograde placement (p > .05) or preoperative dentin sealing (p > .05) were detected. Conclusions Apical plugs of the tested HCSCs cause discoloration of bovine roots, but not discoloration of bovine tooth crowns within a 24-month period. Clinical relevance APT should be performed carefully while avoiding direct contact with the coronal dentin, and in that case no aesthetic impairments occur.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Philipp Körner ◽  
Luca Georgis ◽  
Daniel B. Wiedemeier ◽  
Thomas Attin ◽  
Florian J. Wegehaupt

Abstract Background This in-vitro-study aimed to evaluate the potential of different fluoride gels to prevent gastroesophageal reflux induced erosive tooth wear. Methods Surface baseline profiles of a total of 50 bovine enamel specimens [randomly assigned to five groups (G1–5)] were recorded. All specimens were positioned in a custom made artificial oral cavity and perfused with artificial saliva (0.5 ml/min). Reflux was simulated 11 times a day during 12 h by adding HCl (pH 3.0) for 30 s (flow rate 2 ml/min). During the remaining 12 h (overnight), specimens were stored in artificial saliva and brushed twice a day (morning and evening) with a toothbrush and toothpaste slurry (15 brushing strokes). While specimens in the control group (G1) did not receive any further treatment, specimens in G2–5 were coated with different fluoride gels [Elmex Gelée (G2); Paro Amin Fluor Gelée (G3); Paro Fluor Gelée Natriumfluorid (G4); Sensodyne ProSchmelz Fluorid Gelée (G5)] in the evening for 30 s. After 20 days, surface profiles were recorded again and enamel loss was determined by comparing them with the baseline profiles. The results were statistically analysed using one-way analysis of variance (ANOVA) followed by Tukey`s HSD post-hoc test. Results The overall highest mean wear of enamel (9.88 ± 1.73 µm) was observed in the control group (G1), where no fluoride gel was applied. It was significantly higher (p < 0.001) compared to all other groups. G2 (5.03 ± 1.43 µm), G3 (5.47 ± 0.63 µm, p = 0.918) and G4 (5.14 ± 0.82 µm, p > 0.999) showed the overall best protection from hydrochloric acid induced erosion. Enamel wear in G5 (6.64 ± 0.86 µm) was significantly higher compared to G2 (p = 0.028) and G4 (p = 0.047). Conclusions After 20 days of daily application, all investigated fluoride gels are able to significantly reduce gastroesophageal reflux induced loss of enamel.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100865
Author(s):  
B.K. Davies ◽  
Andrew Hibbert ◽  
Mark Hopkinson ◽  
Gill Holdsworth ◽  
Isabel Orriss

2009 ◽  
Vol 20 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Fernando Henrique Ruppel Osternack ◽  
Danilo Biazzetto de Menezes Caldas ◽  
Rodrigo Nunes Rached ◽  
Sérgio Vieira ◽  
Jeffrey A. Platt ◽  
...  

This in vitro study evaluated the Knoop hardness of the composite resins Charisma® (C) and Durafill VS® (D) polymerized in 3 different conditions: at room temperature (A) (23 ± 1°C); refrigerated at 4 ± 1°C and immediately photo-activated after removal from the refrigerator (0); and, refrigerated at 4 ± 1°C and photo-activated after a bench time of 15 min at room temperature (15). One hundred and twenty specimens (4 mm diameter and 2 mm depth) were made using a stainless steel mold and following manufacturer's instructions. All specimens were tested immediately after polymerization (I) and after 7 days of water storage in the dark at room temperature (7d). The data were subjected to ANOVA and post-hoc Tukey's test (a=0.05). On the top surface, CAI was statistically similar to C15I and DAI to D15I (p>0.05). On the bottom surface, CAI presented higher hardness values when compared to COI and C15I (p<0.05). The D groups showed no significant differences (p>0.05) on the bottom surfaces for any tested polymerization condition. After 7 days of storage, the Knoop hardness decreased significantly (p<0.05) for groups C7d and D7d except for C07d, which was not different from COI at either surface (p>0.05). D07d showed higher Knoop hardness (p<0.05) values on the top surface when compared to the other groups.


2018 ◽  
Vol 49 (4) ◽  
pp. 929-935 ◽  
Author(s):  
Carolina M. Bedoya-Serna ◽  
Gustavo C. Dacanal ◽  
Andrezza M. Fernandes ◽  
Samantha C. Pinho

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6753
Author(s):  
Ramona S. Oltramare ◽  
Reto Odermatt ◽  
Phoebe Burrer ◽  
Thomas Attin ◽  
Tobias T. Tauböck

The aim of this in vitro study was to investigate the degree of C=C double bond conversion of high-viscosity dimethacrylate- or ormocer-based bulk-fill composites as a function of measurement depth. Four bulk-fill composites (Tetric EvoCeram Bulk Fill, x-tra fil, SonicFill, and Bulk Ormocer) and the conventional nanohybrid composite Tetric EvoCeram were applied in standardized Class II cavities (n = 6 per group) and photoactivated for 20 s at 1350 mW/cm2. The degree of conversion of the composites was assessed using Fourier-transform infrared spectroscopy at seven measurement depths (0.15, 1, 2, 3, 4, 5, 6 mm). Data were analyzed using repeated measures ANOVA and one-way ANOVA with Bonferroni post-hoc tests (α = 0.05). The investigated bulk-fill composites showed at least 80% of their maximum degree of conversion (80% DCmax) up to a measuring depth of at least 4 mm. Tetric EvoCeram Bulk Fill and Bulk Ormocer achieved more than 80% DCmax up to a measuring depth of 5 mm, x-tra fil up to 6 mm. The conventional nanohybrid composite Tetric EvoCeram achieved more than 80% DCmax up to 3 mm. In contrast to the conventional composite, the investigated ormocer- and dimethacrylate-based bulk-fill composites can be photo-polymerized in thick layers of up to at least 4 mm with regard to their degree of C=C double bond conversion.


2020 ◽  
Vol 11 (2) ◽  
pp. 160-166
Author(s):  
Mohammad Javad Moghaddas ◽  
Horieh Moosavi ◽  
Sara Yaghoubirad ◽  
Nasim Chiniforush

Introduction: The purpose of this study was to compare the effect of the bioactive glass, the glass ionomer, and the Erbium YAG laser as liners on the remineralization of the affected dentin. Methods: The present study was conducted on 64 healthy extracted human molars divided into 4 groups, 1 control group and 3 experimental groups. After artificially inducing dentinal caries lesions, each of the experimental groups was applied to the cavity floor and then restored with a composite. The samples were stored after thermocycling in an incubator for two months. Finally, the hardness of the cavity floor was measured at 3 depths of 20, 50 and 100 μm by the Vickers microhardness tester. The dentin conditions underneath the liners were also evaluated with FESEM. Statistical analysis was performed by two-way ANOVA and the post-hoc Games-Howell test (P<0.05). Results: Among the groups, the lowest microhardness value was in the control group (P<0.05) except at a depth of 100 μm; therefore, there was no significant difference between the control group and the bioactive glass (P>0.05). The laser group had the highest microhardness value, which was significantly different from the control group (P<0.05). There was a significant difference between the laser and bioactive glass (P<0.05), except at a depth of 20 μm. The laser and glass ionomer had only a significant difference at a depth of 100 μm (P<0.05). The microhardness value induced by glass ionomer was higher than bioactive glass, which in no depth was significant (P>0.05). Partial dentinal tubule occlusion was observed with FESEM in each of the experimental groups as compared to the control group. Conclusion: The microhardness values were higher in all groups than in the control group. The laser might be more successful in remineralization than the other ones.


Sign in / Sign up

Export Citation Format

Share Document