scholarly journals State of the Art in Separation Processes for Alternative Working Fluids in Clean and Efficient Power Generation

Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Odi Fawwaz Alrebei ◽  
Abdulkarem I. Amhamed ◽  
Muftah H. El-Naas ◽  
Mahmoud Hayajnh ◽  
Yasmeen A. Orabi ◽  
...  

Gas turbines must now comply with much stricter emission control regulations. In fact, to combat the greenhouse effect, regulatory authorities have drastically reduced allowable emission levels. For example, in less than 12 years, the United States’ Clean Air Act issued the New Source Performance Standards (NSPS), which tightened the NOx emission margin of natural gas combustion (from 75 ppm to 10 ppm). On the other hand, despite those efforts, the high demand for energy produced by fossil-fueled gas turbines in power plants has resulted in dramatic increases in anthropogenic CO2 and NOx emitted by gas combustors. Most systems responsible for these undesirable emissions are directly linked to power generation, with gas turbines playing a pivotal role. Yet, gas turbines are still widely used in power plants and will continue to meet the growing demand. Therefore, sequestration and separation techniques such as Carbon Capture and Storage (CCS) and Air Separation Units (ASU) are essential to reduce CO2 and NOx emissions while allowing large amounts of power to be generated from these systems. This paper provides an in-depth examination of the current state of the art in alternative working fluids utilized in the power generation industry (i.e., gas turbines, combustion). In addition, this paper highlights the recent contribution of integrating separation techniques, such as air separation, steam methane reforming, and water-gas shifting, to the power generation industry to facilitate a continuous and adequate supply of alternative working fluids.

Author(s):  
Wolfgang Kappis ◽  
Stefan Florjancic ◽  
Uwe Ruedel

Market requirements for the heavy duty gas turbine power generation business have significantly changed over the last few years. With high gas prices in former times, all users have been mainly focusing on efficiency in addition to overall life cycle costs. Today individual countries see different requirements, which is easily explainable picking three typical trends. In the United States, with the exploitation of shale gas, gas prices are at a very low level. Hence, many gas turbines are used as base load engines, i.e. nearly constant loads for extended times. For these engines reliability is of main importance and efficiency somewhat less. In Japan gas prices are extremely high, and therefore the need for efficiency is significantly higher. Due to the challenge to partly replace nuclear plants, these engines as well are mainly intended for base load operation. In Europe, with the mid and long term carbon reduction strategy, heavy duty gas turbines is mainly used to compensate for intermittent renewable power generation. As a consequence, very high cyclic operation including fast and reliable start-up, very high loading gradients, including frequency response, and extended minimum and maximum operating ranges are required. Additionally, there are other features that are frequently requested. Fuel flexibility is a major demand, reaching from fuels of lower purity, i.e. with higher carbon (C2+), content up to possible combustion of gases generated by electrolysis (H2). Lifecycle optimization, as another important request, relies on new technologies for reconditioning, lifetime monitoring, and improved lifetime prediction methods. Out of Alstom’s recent research and development activities the following items are specifically addressed in this paper. Thermodynamic engine modelling and associated tasks are discussed, as well as the improvement and introduction of new operating concepts. Furthermore extended applications of design methodologies are shown. An additional focus is set ono improve emission behaviour understanding and increased fuel flexibility. Finally, some applications of the new technologies in Alstom products are given, indicating the focus on market requirements and customer care.


Author(s):  
Lorenzo Cozzi ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Savino Depalo ◽  
Pio Astrua ◽  
...  

Abstract The overall fraction of the power produced by renewable sources in the energy market has significantly increased in recent years. The power output of most of these clean sources is intrinsically variable. At present day and most likely in the upcoming future, due to the lack of inexpensive and reliable large energy storage systems, conventional power plants burning fossil fuels will still be part of the energy horizon. In particular, power generators able to promptly support the grid stability, such as gas turbines, will retain a strategic role. This new energy scenario is pushing gas turbine producers to improve the flexibility of their turbomachines, increasing the need for reliable numerical tools adopted to design and validate the new products also in operating conditions far from the nominal one. Especially when dealing with axial compressors, i.e. machines experiencing intense adverse pressure gradients, complex flow structures and severe secondary flows, CFD modelling of offdesign operation can be a real challenge. In this work, a state-of-the art CFD framework for RANS analysis of axial compressors is presented. The various aspects involved in the whole setup are discussed, including boundary conditions, meshing strategies, mixing planes modelling, tip clearance treatment, shroud leakages and turbulence modelling. Some experiences about the choice of these aspects are provided, derived from a long-date practice on this kind of turbomachines. Numerical results are reported for different full-scale compressors of the Ansaldo Energia fleet, covering a wide range of operating conditions. Furthermore, details about the capability of the setup to predict compressor performance and surge-margin have been added to the work. In particular, the setup surge-margin prediction has been evaluated in an operating condition in which the turbomachine experiences experimental stall. Finally, thanks to several on-field data available at different corrected speeds for operating conditions ranging from minimum to full load, a comprehensive validation of the presented numerical framework is also included in the paper.


Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2358 ◽  
Author(s):  
Omar Mohamed ◽  
Ashraf Khalil

This paper reviews the modeling techniques and control strategies applied to gas turbine power generation plants. Recent modeling philosophies are discussed and the state-of-the-art feasible strategies for control are shown. Research conducted in the field of modeling, simulation, and control of gas turbine power plants has led to notable advancements in gas turbines’ operation and energy efficiency. Tracking recent achievements and trends that have been made is essential for further development and future research. A comprehensive survey is presented here that covers the outdated attempts toward the up-to-date techniques with emphasis on different issues and turbines’ characteristics. Critical review of the various published methodologies is very useful in showing the importance of this research area in practical and technical terms. The different modeling approaches are classified and each category is individually investigated by reviewing a considerable number of research articles. Then, the main features of each category or approach is reported. The modern multi-variable control strategies that have been published for gas turbines are also reviewed. Moreover, future trends are proposed as recommendations for planned research.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Author(s):  
Gregor Gnädig

Many Asian countries are experiencing economic growth which averages 5–10% per year. This environment has led to a privatization process in the power generation industry from typically state-run utilities to a system in which a federal agency oversees a market divided by private utilities and independent power producers (IPP) with the need for high efficiency, reliable power generation running on natural gas and diesel oil. In the 50 Hz market, modem, high efficient gas turbines of the type GT13E and GT13E2 have been chosen as prime movers in many combined cycle power plants in Asian countries. This paper includes a product description, and a general overview of GT13E and GT13E2 operating experience, well as an economic evaluation of a typical 500 MW combined cycle power plant.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5604
Author(s):  
Hookyung Lee ◽  
Minjung Lee

With the formation of an international carbon-neutral framework, interest in reducing greenhouse gas emissions is increasing. Ammonia is a carbon-free fuel that can be directly combusted with the role of an effective hydrogen energy carrier, and its application range is expanding. In particular, as research results applied to power generation systems such as gas turbines and coal-fired power plants have been reported, the technology to use them is gradually being advanced. In the present study, starting with a fundamental combustion research case conducted to use ammonia as a fuel, the application research case for gas turbines and coal-fired power plants was analyzed. Finally, we report the results of the ammonia-air burning flame and pulverized coal-ammonia-air co-fired research conducted at the authors’ research institute.


Author(s):  
Justin Zachary

Since 1998, the United States has experienced a tremendous increase in power generation projects using gas turbine technology. By burning natural gas as the primary fuel and low sulfur oil as a back-up fuel, gas turbines are the cleanest form of fossil power generation.


Author(s):  
Helmut E. Vierrath ◽  
Peter K. Herbert ◽  
Claus F. Greil ◽  
Brian H. Thompson

It is widely accepted that coal gasification combined-cycle plants represent an environmentally superior alternative to conventional coal fired power plants with flue gas desulfurization. Purpose of this paper is to show that technology is available for all steps required to convert coal to electricity, including treatment of waste streams. Based on examples for power plants in the 200–800 MW range using current and as well as advanced gas turbines, it is shown that under both European and US-conditions cost of electricity from this (new) route of coal based power generation is certainly no higher — and probably even lower — than from conventional PC (pulverized coal) power plants equipped with equivalent environmental control technology. Thus, this technology is likely to be a prime contributor when it comes to enhance environmental acceptability of power plants in general, and to help solve the acid rain problem in particular. In addition the versatility of the proposed technology for repowering, decentralized application and district heat system is explained.


Sign in / Sign up

Export Citation Format

Share Document