scholarly journals Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil

Soil Systems ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
J. Bernhard Wehr ◽  
Gunnar Kirchhof

International collaboration on agronomy projects often requires the shipment of soil samples between countries to conduct analyses. However, quarantine regulations in numerous countries restrict the importing of soil samples unless they are sterilized, or analysis is carried out only in quarantine facilities, which greatly increases cost. Yet, sterilization is only an option if it does not change the soil properties. There is conflicting information about the effect of irradiation on soil chemical properties. To assess the effect of gamma irradiation on some soil chemical properties, one hundred randomly selected air-dried (40 °C) soil samples were split into two samples. One sample was left untreated and the other sample was irradiated with 50 kGy as prescribed by Australian biosecurity regulations. Commonly measured agronomic soil chemical properties were then measured and results from the non-irradiated samples were compared to the irradiated samples. The results show no effect of irradiation on soil cation exchange capacity, exchangeable cations, total carbon and nitrogen content, and DTPA-extractable Zn. Small (<5%) but statistically significant effects of irradiation were observed for pH (1:5 water), electric conductivity (EC1:5), DTPA-extractable Cu, Fe and Mn, and Colwell P. The irradiation effects on Fe were greater in the topsoil than subsoil. Considering that irradiation-induced changes to soil chemical properties were below 5%, gamma irradiation can be considered a suitable method to sterilize air-dried soil to meet import requirements, without affecting the interpretation of soil fertility reports.

Author(s):  
Hylda Permata Riantara ◽  
Marga Mandala

Cassava has an important role as a potential caloric source for the community. Cassava has been known as a plant with wide range adaptability, thus it is very potential to be cultivated in areas with highly variated agro-ecological conditions such as temperate regions, marginal land, and dryland. This research aimed to study the chemical properties of suboptimal dryland in Panji, Kendit and Kapongan Subdistrict, Situbondo Regency for the development of cassava cultivation. The research was carried out by doing surveys and taking soil samples of suboptimal dryland in Subdistricts of Panji, Kendit, and Kapongan. Each subdistrict had 5 locations chosen as site obtaining soil samples. The soil samples were taken at a depth of 20 cm, each soil sample was put into a plastic clip, then was labeled and brought to the Soil Fertility Laboratory for analysis of soil chemical properties. The soil chemical properties analyzed were pH H2O, cation exchange capacity (CEC), organic carbon, total Nitrogen, available Phosphate, and available Kalium. The results showed that the organic carbon, total Nitrogen, and available Phosphate became a limiting factor which belonged to the category of very low to low, with organic carbon of 0.80-1.44%, total Nitrogen of 0.12-0.17% and available Phosphate of 15.21-15.97 ppm. Nevertheless, the soil chemical properties of suboptimal dryland are quite suitable for cassava, however other inputs are needed to the soil by fertilizing the organic matter, Nitrogen, and Phosphate.


2015 ◽  
Vol 39 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Ivanildo Amorim de Oliveira ◽  
Milton César Costa Campos ◽  
José Marques Junior ◽  
Renato Eleotério de Aquino ◽  
Daniel de Bortoli Teixeira ◽  
...  

The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE), forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


Author(s):  
M. A. Adejumobi

Soil is used in agriculture as an anchor and primary nutrient base for plants, and the types of soil and available moisture determine the species of plants that can be cultivated. Bush burning, whether as result of a wildfire or a controlled burning, affects not only the appearance of the landscape, but the quality of the soil. Bush burning method of land clearing is a traditional farming system used as a means of land clearing for crop production. This method of land clearing has both beneficial and detrimental effects on soil physical and chemical properties. Therefore, this study investigated the effects of bush burning on soil chemical properties at different soil depth of 0-30 cm and 30-60 cm respectively base on the rooting depth of crop planted. The experiment was carried out in six selected farms in Igboora, Ibarapa central Local Governmental, Oyo State. The soil sampled were collected from burnt and unburnt experimental soil and analyzed using USDA standard methods for soil analysis for the selected chemical characteristics (pH, Ca2+, Mg2+ Na+. TN and P). Two samples were taken from each burnt and un-burnt locations at depth of 0-30 and 30-60 cm. Paired t-test was used to compare means value of soil chemical properties determined from burnt and un-burnt soil. ANOVA was used for significance difference between soil from burnt and un-burnt soil. pH increased from moderately acidic to slightly acidic, phosphorus content of the soil increased greatly from un-burnt soil to burnt soil at 0-30 cm and 30-60 cm depths from 6.64 to 22.21 ppm and 3.53 to 24.95 ppm, respectively. Similarly, potassium increased from 0.27 to 0.40ppm at 0-30cm depth but decreased from 0.23 to 0.17 ppm at 30-60 cm depth. Nitrogen reduced at both depths from 0.80 to 0.76% and 0.72 to 0.68% respectively. Magnesium also increased from 1.3 cmol/kg to 2.00 cmol/kg and 1.65 to 1.75 cmol/kg at both 0-30 cm and 30-60 cm depth respectively. Whereas calcium showed a reduction from 3.17 to 2.85 cmol/kg and 1.65 to 1.45 cmol/kg at both depths. The variations observed between burnt and un-burnt soil for Ca, Mg, exchangeable acidity, pH, Nitrogen, potassium was significant at p<0.05 probability level. This indicates that bush burning has an impact on soil physical and chemical properties which may affect the suitability of the soil for crop production. Based on this, there is need for environmental education for farmers in the area in order to know the implications of bush burning on soil properties for soil sustainability which will boost food production.


2020 ◽  
Vol 6 ◽  
pp. 115-126
Author(s):  
Shukra Raj Shrestha ◽  
Jiban Shrestha ◽  
Sanjeet Kumar Jha ◽  
Dinesh Khadka ◽  
Prakash Paneru ◽  
...  

Field experiments were conducted for four years (2014-2017) at five locations namely Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj of Sunsari district to assess the changes in soil chemical properties under conservation agriculture (CA)-based practices in two cropping systems namely rice-kidney bean-maize at Salbani and rice-wheat at rest of the locations. In rice-wheat cropping system, there were four treatments: (1) conventional tillage (CT) for rice transplantation and subsequent wheat sowing, (2) conventional tillage rice transplantation followed by zero tillage (ZT) wheat, (3) unpuddled rice transplantation followed by zero tillage wheat, (4) zero tillage in both rice and wheat. Similarly, in rice-kidney bean-maize cropping system, there were four treatments; (1) conventional tillage for rice transplantation and sowing of both kidney bean and maize, (2) conventional tillage rice transplantation followed by zero tillage in both kidney bean and maize, (3) unpuddled rice transplantation followed by zero tillage in both kidney bean and maize, (4) zero tillage in all three crops. Soil samples were taken at initial and every year after rice harvest.The soil samples were analyzed for total nitrogen, available phosphorus, available potassium, pH and soil organic matter.Total nitrogen (N) showed a slightly decreasing trend in the first three years and showed a slight increase at the end of experiment under ZT in all locations. The total N under ZT changed from 0.12 to 0.13%, 0.05 to 0.06%, 0.10 to 0.12%, 0.11 to 0.08% and 0.09 to 0.13% in Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj, respectively.  All locations showed the positive values of available potassium; Salbani  revealing considerable change of 64.3 to 78.5 mg/kg in CT while 68.4 to 73.3 mg/kg in ZT condition. The treatment where rice was transplanted in unpuddled condition and zero tilled to wheat, had a mean value of available phosphorus and potassium as 87.3 and 81.9 mg/kg respectively. Soil pH ranged from 4.8 to 7.1 in CT while it was 5.2 to 6.8 in ZT across the locations. The change in soil organic matter in CT of all locations except Salbani was narrower as compared to ZT.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


Author(s):  
Z. Abdulhamid ◽  
E.B. Agbaji ◽  
C.E. Gimba ◽  
A.S. Agbaji

Physico-chemical properties and heavy metals content of soils were determined from seven farms in Minna, central Nigeria. Conventional analytical methods were employed to determine the physico-chemical properties and the heavy metals were analysed by atomic absorption spectrometry. The result showed that pH values ranged from 6.64 - 7.70 indicating slight acidity to slight alkalinity of the soils. The total organic carbon values ranged from 0.95-2.25 % resulting in the presence of organic matter (1.63-3.87). The electrical conductivity values ranged from 17-37 μS/cm. The cation exchange capacity of the soil samples ranged from 3.68-5.15 cmol/kg. The heavy metals levels were in the following range: Cd (0.00018-0.00134 mg/g), Cu (0.0069-0.0476 mg/g), Fe (1.942-2.2059 mg/g), Mn (0.1825-0.3696 mg/g), Ni (0.0065-0.0069 mg/g) and Zn (0.0157-0.2252 mg/g). The concentration of the metals in the soil samples varied according to the following trend: Fe>Mn>Zn> Cu>Ni>Cd. The average concentration of all the metals in each farm also gave the trend Farm B>Farm G>Farm E>Farm C>Farm F>Farm D>Farm A. The findings indicate the presence of heavy metals in all the farms but only Fe was above the FAO/WHO standards.


1959 ◽  
Vol 39 (1) ◽  
pp. 6-11 ◽  
Author(s):  
J. D. Beaton

The effects of fire on certain soil chemical properties were investigated on soil samples taken from the surface organic layer (O horizon) and the immediately underlying leached mineral layer (A2 horizon) from seven different burns and from corresponding unburned areas present within each burned-over area. Burning resulted in an increase in the pH, total phosphorus content, and CO2-soluble calcium content of the O horizon of most of the soils studied. As a consequence of fire, the O horizon was reduced in organic matter, total nitrogen and carbonic acid-soluble phosphorous and magnesium. Most of the effects of fire upon soil chemical properties were apparently restricted to the O horizon since no significant trends were evident in the underlying A2 horizon.


2018 ◽  
Vol 5 (3) ◽  
pp. 434-440
Author(s):  
Fitra Syawal Harahap ◽  
Abdul Rauf ◽  
Benny Hidayat ◽  
Hilwa Walida ◽  
Jamidi ◽  
...  

Organic materials in situ remaining paddy crops in paddy fields are much abandoned by farmers. Most of the remaining harvested are burned, stacked in the cultivated, or used for animal feed or as a fungus. Straw compost is source of Potassium (K) and Silica (Si). About 80% of K absorbed by plants is in the straw. The return of straw to the soil may slow the impoverishment of Potassium (K) in the soil. This study aims to find out how the availability of phosphorus (P) and potassium (K) nutrients by giving organic matter as soil fertility status in paddy fields in Beringin Subdistrict, Deli Serdang Regency and to review management alternatives that are in accordance with the soil fertility status in the Central Land Rice fields in Beringin Subdistrict, Deli Serdang Regency. This research was carried out in the Central Rice Field in Beringin Subdistrict, Deli Serdang Regency ± 11 meters above sea level. The taking of soil samples was taken in the upper layer at the top soil depth of 0-20 cm, 20-40 cm and the coordinates were recorded using GPS (Global Positioning System). While information on land management is obtained by direct observation in the field and in-depth interviews with farmers in snow ball which aims to obtain complete information from farmers. Soil samples that have been taken in the field are then analyzed in the laboratory. Soil chemical properties analyzed in laboratory soil chemical properties analyzed at P2O5 Bray II (ppm) laboratory K2O Hcl 25% (mg / 100g). To determine the chemical properties of soil with certain criteria that have been determined. Based on Technical Guidelines for Evaluation of Soil Fertility The direction of management of soil fertility needs to be added to organic matter and phosphorus fertilization regularly so that soil fertility can be sustainable. Further research is needed in order to find out the addition of phosphorus fertilizer and organic matter in each unit of land.


2020 ◽  
Vol 10 (2) ◽  
pp. 110
Author(s):  
MADE KRISNANDA ADI SAPUTRA ◽  
KETUT DHARMA SUSILA ◽  
TATI BUDI KUSMIYARTI

Effect of Some Fertilizer Formulas on Soil Chemical Properties and Yield of Green Mustard (Brassica juncea L.) in Subak Tegal Lantang, West Denpasar District. The aims of this study is to determine the effect of several fertilizer formulas on soil chemical properties and yield of green mustard (Brassica juncea L.) in Subak Tegal Lantang, West Denpasar District. This study used a Randomized Block Design (RBD) consisting of 6 treatments including controls and repeated 4 times with a total of 24 treatment plots. Fertilization treatment consists of three types of fertilizers, namely organic fertilizer, inorganic fertilizer, and biofertilizer. The fertilizer formula tested consisted of P0 = control (without fertilizer), P1= 5 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1, P2= 5 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1 + biofertilizer (1 cc / liter water / plot), P3= 10 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1, P4= 10 tons of compost ha-1 + 300kg Phonska ha-1 + 200kg Urea ha-1 + biofertilizer (1 cc / liter of water / plot), P5= biofertilizer with a concentration of 1 cc / liter of water / plot. The data from the observed parameters then analyzed statistically using analysis of variance (Anova) to determine the significance of the treatment. If it has a significant effect on the parameters observed, then it will be followed by the LSD test at the 5% real level. The results of study showed that the fertilizer formula treatment had a very significant effect on organic-C (P <0,01) and significantly affected the plant fresh weight (P <0,05), but had no significant effect on the acidity (pH), total-N, available-K, available-P, cation exchange capacity, base saturation, plant height, number of leaves, and plant dry weight. The P4 fertilizer formula gave the highest increase in soil organic-C content significantly by 2.99% or an increase of 66% compared to the control and gave the highest yield of fresh greens mustard by 23.64 tons ha-1.


Sign in / Sign up

Export Citation Format

Share Document