scholarly journals Inventory of Spatio-Temporal Methane Emissions from Livestock and Poultry Farming in Beijing

2019 ◽  
Vol 11 (14) ◽  
pp. 3858
Author(s):  
Yixuan Guo ◽  
Yidong Wang ◽  
Shufeng Chen ◽  
Shunan Zheng ◽  
Changcheng Guo ◽  
...  

Livestock and poultry farming sectors are among the largest anthropogenic methane (CH4) emission sources, mainly from enteric fermentation and manure management. Previous inventories of CH4 emission were generally based on constant emission factor (EF) per head, which had some weaknesses mainly due to the succession of breeding and feeding systems over decades. Here, more reliable long-term changes of CH4 emissions from livestock and poultry farming in Beijing are estimated using the dynamic EFs based on the Intergovernmental Panel on Climate Change (IPCC) Tier 2 method, and high-resolution spatial patterns of CH4 emissions are also estimated with intensive field survey. The results showed that the estimated CH4 emissions derived by dynamic EFs were approximately 13–19% lower than those based on the constant EF before 2010. After 2011, however, the dynamic EFs-derived CH4 emissions were a little higher (3%) than the constant EF method. Temporal CH4 emissions in Beijing had experienced four developing stages (1978–1988: stable; 1989–1998: slow growth; 1999–2004: rapid growth and reached hot moments; 2005–2014: decline) during 1978–2014. Over the first two decades, the contributions of pigs (45%) and cattle (46%) to annual CH4 emission were similar; subsequently, the cattle emitted more CH4 compared to the pigs. At a spatial scale, Shunyi, Daxing, and Tongzhou districts with more cattle and pigs are the hotspots of CH4 emission. In conclusion, the dynamic EFs method obviously improved the spatio-temporal estimates of CH4 emissions compared to the constant EF approach, and the improvements depended on the period and aquaculture structure. Therefore, the dynamic EFs method should be recommended for estimating CH4 emissions from livestock and poultry farming in the future.

2020 ◽  
Author(s):  
Kimberly Mueller ◽  
Subhomoy Ghosh ◽  
Anna Karion ◽  
Sharon Gourdji ◽  
Israel Lopez-Coto ◽  
...  

<p>In the past decade, there has been a scientific focus on improving the accuracy and precision of methane (CH4) emission estimates in the United States, with much effort targeting oil and natural gas producing basins. Yet, regional CH4 emissions and their attribution to specific sources continue to have significant associated uncertainties. Recent urban work using aircraft observations have suggested that CH4 emissions are not well characterized in major cities along the U.S. East Coast; discrepancies have been attributed to an under-estimation of fugitive emissions from the distribution of natural gas. However, much of regional and urban research has involved the use of aircraft campaigns that can only provide a spatio-temporal snapshot of the CH4 emission landscape. As such, the annual representation and the seasonal variability of emissions remain largely unknown. To further investigate CH4 emissions, we present preliminary CH4 emissions estimates in the Northeastern US as part of NIST’s Northeast Corridor (NEC) testbed project using a regional inversion framework. This area encompasses over 20% of the US and contains many of the dominant CH4 emissions sources important at both regional and local scales.  The atmospheric inversion can estimate sub-monthly 0.1-degree emissions using observations from a regional network of up to 37 in-situ towers; some towers are in non-urban areas while others are in cities or suburban areas. The inversion uses different emission products to help provide a prior constraint within the inversion including anthropogenic emissions from both the EDGAR v42 for the year 2008 and the US EPA for the year 2012, and natural wetland CH4 emissions from the WetCHARTs ensemble mean for the year 2010. Results include the comparison of synthetic model simulated CH4 concentrations (i.e., convolutions of the emission products with WRF-STILT footprints + background) to mole-fractions measured at the regional in-situ sites. The comparison provides an indication as to how well our prior understanding of emissions and incoming air flow matches the atmospheric signatures due to the underlying CH4 sources.  We also present a preliminary set of CH4 fluxes for a selected number of urban centers and discuss challenges estimating highly-resolved methane emissions using high-frequency in-situ observations for a regional domain (e.g. few constraints, skewness in underlying fluxes, representing incoming background, etc.). Overall, this work provides the basis for a year-long inversion that will yields regional CH4 emissions over the Northeast US with a focus on Eastern urban areas.</p>


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 350 ◽  
Author(s):  
Björn Ole Sander ◽  
Pia Schneider ◽  
Ryan Romasanta ◽  
Kristine Samoy-Pascual ◽  
Evangeline B. Sibayan ◽  
...  

Reducing methane (CH4) emission from paddy rice production is an important target for many Asian countries in order to comply with their climate policy commitments. National greenhouse gas (GHG) inventory approaches like the Tier-2 approach of the Intergovernmental Panel on Climate Change (IPCC) are useful to assess country-scale emissions from the agricultural sector. In paddy rice, alternate wetting and drying (AWD) is a promising and well-studied water management technique which, as shown in experimental studies, can effectively reduce CH4 emissions. However, so far little is known about GHG emission rates under AWD when the technique is fully controlled by farmers. This study assesses CH4 and nitrous oxide (N2O) fluxes under continuous flooded (CF) and AWD treatments for seven subsequent seasons on farmers’ fields in a pumped irrigation system in Central Luzon, Philippines. Under AWD management, CH4 emissions were substantially reduced (73% in dry season (DS), 21% in wet season (WS)). In all treatments, CH4 is the major contributor to the total GHG emission and is, thus, identified as the driving force to the global warming potential (GWP). The contribution of N2O emissions to the GWP was higher in CF than in AWD, however, these only offset 15% of the decrease in CH4 emission and, therefore, did not jeopardize the strong reduction in the GWP. The study proves the feasibility of AWD under farmers’ management as well as the intended mitigation effect. Resulting from this study, it is recommended to incentivize dissemination strategies in order to improve the effectiveness of mitigation initiatives. A comparison of single CH4 emissions to calculated emissions with the IPCC Tier-2 inventory approach identified that, although averaged values showed a sufficient degree of accuracy, fluctuations for single measurement points have high variation which limit the use of the method for field-level assessments.


Author(s):  
Nunzia Ciriello ◽  
Lorenza Albano ◽  
Giuseppe Auriemma ◽  
Raffaele Palomba ◽  
Giuseppe Grazioli ◽  
...  

The environmental impact of greenhouse gases caused by livestock farms plays a fundamental role due to the implications and environmental consequences that livestock practices entail, affecting the stability of the entire ecosystem connected to them, especially as a consequence of the growing demand for products of animal origin. The aim of this work was to quantify the CH4 emissions factor in lactating buffaloes by comparing four different types of livestock management: family, conventional, organic and sustainable. To determine the enteric CH4 emissions from buffalo, information about animal production and farm management was analyzed, and the CH4 emission factor was calculated using the IPCC Tier 2 model. ANOVA was conducted to evaluate significant differences between the farms; Pearson’s correlation was used to evaluate the relationship between parameters. In a conventional farm, the CH4 emission factor for buffalo was 27.69 kg CH4/head/yr compared to 22.77 and 21.61 kg CH4/head/yr respectively for organic and family-run. These data may also depend on the higher protein and fiber content in the administered unifeed. Furthermore, the ratio of enteric emissions factor of CH4 / gross energy intake ratio reflected these data (12.04 vs 10.93 vs 10.16 vs 10.65 for conventional, organic, sustainable, and family-run farms, respectively).


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 157-157
Author(s):  
Tae Hoon Kim ◽  
Ridha Ibidhi ◽  
Yoo-Gyung Lee ◽  
Hyun.June Lee ◽  
Kyoung Hoon Kim

Abstract Dairy cattle farming was identified as an important source of enteric methane (CH4) emissions. In order to contribute to the improvement of the national greenhouse gas emission inventory, this work aims to develop emission factors (EF) for CH4 emissions from enteric fermentation in dairy cattle in South Korea. Information on dairy cattle herd characteristics, diet and management practices specific to the Korean dairy cattle population were gathered. EF was estimated according to the 2019 refinement to the 2006 Intergovernmental Panel on Climate Change (IPCC) using the Tier 2 approach. Three animal subcategories were considered: milking cows (650 kg body weight, BW), heifers 1~2 years (473 kg BW) and growing animals < 1 year (167 kg BW). The estimated enteric CH4 EFs for milking cows, heifers 1~2 years, growing animal < 1 year, were 139, 83 and 33 kg/head/year, respectively. South Korea adopted the Tier 1 default enteric CH4 EFs for GHG inventory reporting from the North America region. Compared with the generic Tier 1 default EF of 138 kg CH4/head/year proposed by the 2019 refinement to the 2006 IPCC guidelines for high milking cows, our suggested value is quite similar (139 kg CH4/ head/year). While enteric CH4 EFs values were 23% higher and 49% lower for heifers and growing animals < one year than Tier 1 default EFs values, respectively. In addition, enteric CH4 EF is highly correlated with the level of milk production, feed intake and digestibility and methane conversion factor (%Ym). The outcome of this study underscores the importance of obtaining country-specific EF to estimate national enteric CH4 emissions. Thus, this work is a step forward in the revision of dairy cattle enteric CH4 EF and can further support assessment of mitigation strategies in South Korean livestock farming systems.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 562
Author(s):  
Hajer Ammar ◽  
Sourour Abidi ◽  
Mediha Ayed ◽  
Nizar Moujahed ◽  
Mario E. deHaro Martí ◽  
...  

This study aimed to determine the emissions of methane (CH4) and nitrous oxide (N2O) from seven Tunisian livestock species and their evolution over eleven consecutive years (2008–2018). The species of animals used were cattle (dairy and others), sheep, goats, camelids, horses, donkeys and mules, and poultry. The estimations of CH4 and N2O emissions were based on the Intergovernmental Panel on Climate Change (IPCC) guidelines for national inventories, using Tier 1 and Tier 2 approaches, with its default emission factors (EFs). The Tier 2 approach was applied only for the calculation of EF to estimate CH4 emissions related to livestock manure management. CH4 emission represented more than 92% of the total greenhouse gas (GHG) from livestock emissions. Moreover, 53% of the total CH4 emissions from livestock were derived from cattle, followed by sheep, goats, other mammals (camelids, horses, mules, and donkeys), and poultry. During the period covered by the study (2008–2018), a slight and continuous decrease of both livestock population and total GHG emissions was observed, mainly in terms of CH4. In mammals, CH4 emissions were greater than N2O emissions, whereas in poultry, N2O emissions were up to 2.6 times greater than CH4 emissions. The aggressive drive of the government to increase cattle and sheep production might affect CH4 emissions in the future. Therefore, periodic estimations of GHG emissions from livestock are required to follow the time trends for more rational decision-making regarding livestock and GHG emissions policies.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


2020 ◽  
Vol 287 (1928) ◽  
pp. 20200538
Author(s):  
Warren S. D. Tennant ◽  
Mike J. Tildesley ◽  
Simon E. F. Spencer ◽  
Matt J. Keeling

Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.


2021 ◽  
pp. 1-16
Author(s):  
CAN ZHOU ◽  
NIGEL BROTHERS

Summary The incidental mortality of seabirds in fisheries remains a serious global concern. Obtaining unbiased and accurate estimates of bycatch rates is a priority for seabird bycatch mitigation and demographic research. For measuring the capture risk of seabird interactions in fisheries, the rate of carcass retrieval from hauled gear is commonly used. However, reliability can be limited by a lack of direct capture observations and the substantial pre-haul bycatch losses known to occur, meaning incidence of seabird bycatch is underestimated. To solve this problem, a new measure (bycatch vulnerability) that links an observed interaction directly to the underlying capture event is proposed to represent the capture risk of fishery interactions by seabirds. The new measure is not affected by subsequent bycatch loss. To illustrate how to estimate and analyse bycatch vulnerability, a case study based on a long-term dataset of seabird interactions and capture confirmation is provided. Bayesian modelling and hypothesis testing were conducted to identify important bycatch risk factors. Competition was found to play a central role in determining seabird bycatch vulnerability. More competitive environments were riskier for seabirds, and larger and thus more competitive species were more at risk than smaller sized and less competitive species. Species foraging behaviour also played a role. On the other hand, no additional effect of physical oceanic condition and spatio-temporal factors on bycatch vulnerability was detected. Bycatch vulnerability is recommended as a replacement for the commonly used bycatch rate or carcass retrieval rate to measure the capture risk of an interaction. Combined with a normalized contact rate, bycatch vulnerability offers an unbiased estimate of seabird bycatch rate in pelagic longline fisheries.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mark Ashworth ◽  
◽  
Antonis Analitis ◽  
David Whitney ◽  
Evangelia Samoli ◽  
...  

Abstract Background Although the associations of outdoor air pollution exposure with mortality and hospital admissions are well established, few previous studies have reported on primary care clinical and prescribing data. We assessed the associations of short and long-term pollutant exposures with General Practitioner respiratory consultations and inhaler prescriptions. Methods Daily primary care data, for 2009–2013, were obtained from Lambeth DataNet (LDN), an anonymised dataset containing coded data from all patients (1.2 million) registered at general practices in Lambeth, an inner-city south London borough. Counts of respiratory consultations and inhaler prescriptions by day and Lower Super Output Area (LSOA) of residence were constructed. We developed models for predicting daily PM2.5, PM10, NO2 and O3 per LSOA. We used spatio-temporal mixed effects zero inflated negative binomial models to investigate the simultaneous short- and long-term effects of exposure to pollutants on the number of events. Results The mean concentrations of NO2, PM10, PM2.5 and O3 over the study period were 50.7, 21.2, 15.6, and 49.9 μg/m3 respectively, with all pollutants except NO2 having much larger temporal rather than spatial variability. Following short-term exposure increases to PM10, NO2 and PM2.5 the number of consultations and inhaler prescriptions were found to increase, especially for PM10 exposure in children which was associated with increases in daily respiratory consultations of 3.4% and inhaler prescriptions of 0.8%, per PM10 interquartile range (IQR) increase. Associations further increased after adjustment for weekly average exposures, rising to 6.1 and 1.2%, respectively, for weekly average PM10 exposure. In contrast, a short-term increase in O3 exposure was associated with decreased number of respiratory consultations. No association was found between long-term exposures to PM10, PM2.5 and NO2 and number of respiratory consultations. Long-term exposure to NO2 was associated with an increase (8%) in preventer inhaler prescriptions only. Conclusions We found increases in the daily number of GP respiratory consultations and inhaler prescriptions following short-term increases in exposure to NO2, PM10 and PM2.5. These associations are more pronounced in children and persist for at least a week. The association with long term exposure to NO2 and preventer inhaler prescriptions indicates likely increased chronic respiratory morbidity.


Sign in / Sign up

Export Citation Format

Share Document