scholarly journals Prediction of Plant Phenological Shift under Climate Change in South Korea

2020 ◽  
Vol 12 (21) ◽  
pp. 9276
Author(s):  
Ha Kyung Lee ◽  
So Jeong Lee ◽  
Min Kyung Kim ◽  
Sang Don Lee

Information on the phenological shift of plants can be used to detect climate change and predict changes in the ecosystem. In this study, the changes in first flowering dates (FFDs) of the plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), cherry tree (Prunus yedoensis), and peach tree (Prunus persica) in Korea during 1920–2019 were investigated. In addition, the changes in the climatic factors (temperature and precipitation) and their relationship with the FFDs were analyzed. The changes in the temperature and precipitation during the January–February–March period and the phenological shifts of all research species during 1920–2019 indicate that warm and dry spring weather advances the FFDs. Moreover, the temperature has a greater impact on this phenological shift than precipitation. Earlier flowering species are more likely to advance their FFDs than later flowering species. Hence, the temporal asynchrony among plant species will become worse with climate change. In addition, the FFDs in 2100 were predicted based on representative concentration pathway (RCP) scenarios. The difference between the predicted FFDs of the RCP 4.5 and RCP 6.0 for 2100 was significant; the effectiveness of greenhouse gas policies will presumably determine the degree of the plant phenological shift in the future. Furthermore, we presented the predicted FFDs for 2100.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2020 ◽  
Vol 287 (1929) ◽  
pp. 20200358
Author(s):  
Junfeng Tang ◽  
Ronald R. Swaisgood ◽  
Megan A. Owen ◽  
Xuzhe Zhao ◽  
Wei Wei ◽  
...  

Climate change is one of the most pervasive threats to biodiversity globally, yet the influence of climate relative to other drivers of species depletion and range contraction remain difficult to disentangle. Here, we examine climatic and non-climatic correlates of giant panda ( Ailuropoda melanoleuca ) distribution using a large-scale 30 year dataset to evaluate whether a changing climate has already influenced panda distribution. We document several climatic patterns, including increasing temperatures, and alterations to seasonal temperature and precipitation. We found that while climatic factors were the most influential predictors of panda distribution, their importance diminished over time, while landscape variables have become relatively more influential. We conclude that the panda's distribution has been influenced by changing climate, but conservation intervention to manage habitat is working to increasingly offset these negative consequences.


2019 ◽  
Vol 25 (3) ◽  
pp. 226-243
Author(s):  
Nesha Dushani Salpage ◽  
Margrethe Aanesen ◽  
Oscar Amarasinghe

AbstractThis study investigates intended visitation behavior of tourists toward Rekawa wetland under anticipated climate change (CC) scenarios. An interview-based contingent visitation survey was conducted with 365 foreign and domestic tourists to estimate the effects of CC on future visitation. Based on two IPCC scenarios using two direct and three indirect climatic factors, we composed a CC environmental index. The results show a decline in number of trips equal to 43 per cent and 53 per cent under scenarios 1 and 2 respectively, but the difference is not significant. Foreign and domestic tourists differ significantly with regard to socio-demographic characteristics and beliefs about CC effects at Rekawa. Controlling for such differences, we demonstrate that foreign tourists are less likely than domestic tourists to reduce future visitation to Rekawa due to CC impacts. Still, the future of ecotourism at Rekawa wetland is at risk if adaptation measures are not taken to meet CC impacts.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


2021 ◽  
Vol 13 (19) ◽  
pp. 10488
Author(s):  
Yiru Jia ◽  
Jifu Liu ◽  
Lanlan Guo ◽  
Zhifei Deng ◽  
Jiaoyang Li ◽  
...  

Slope geohazards, which cause significant social, economic and environmental losses, have been increasing worldwide over the last few decades. Climate change-induced higher temperatures and shifted precipitation patterns enhance the slope geohazard risks. This study traced the spatial transference of slope geohazards in the Qinghai-Tibet Plateau (QTP) and investigated the potential climatic factors. The results show that 93% of slope geohazards occurred in seasonally frozen regions, 2.6% of which were located in permafrost regions, with an average altitude of 3818 m. The slope geohazards are mainly concentrated at 1493–1988 m. Over time, the altitude of the slope geohazards was gradually increased, and the mean altitude tended to spread from 1984 m to 2562 m by 2009, while the slope gradient varied only slightly. The number of slope geohazards increased with time and was most obvious in spring, especially in the areas above an altitude of 3000 m. The increase in temperature and precipitation in spring may be an important reason for this phenomenon, because the results suggest that the rate of air warming and precipitation at geohazard sites increased gradually. Based on the observation of the spatial location, altitude and temperature growth rate of slope geohazards, it is noted that new geohazard clusters (NGCs) appear in the study area, and there is still a possibility of migration under the future climate conditions. Based on future climate forecast data, we estimate that the low-, moderate- and high-sensitivity areas of the QTP will be mainly south of 30° N in 2030, will extend to the south of 33° N in 2060 and will continue to expand to the south of 35° N in 2099; we also estimate that the proportion of high-sensitivity areas will increase from 10.93% in 2030 to 14.17% in 2060 and 17.48% in 2099.


2021 ◽  
Author(s):  
Philipp Nußbaum ◽  
Márk Somogyvári ◽  
Christopher Conrad ◽  
Martin Sauter ◽  
Irina Engelhardt

<p>Approximately 10% of the global population rely on groundwater from karst aquifers. Due to complex karst structures, these aquifers have high infiltration capacities and hydraulic conductivities, which makes them vulnerable to pollution and, as prediction and management are complicated, overexploitation. As populations are growing and demand rises, we assess the current level of groundwater stress in karst aquifers with Mediterranean climates and their vulnerability (defined as the change in groundwater stress) to expected changes in temperature and precipitation on the global scale.</p><p>Our approach is based on a Groundwater Stress Index (GSI), which is calculated for 356 karst aquifers (as identified in the World Karst Aquifer Map) that have some of their area located in Mediterranean climate zones (Csa, Csb, and Csc after Köppen/Geiger). GSI are calculated from seven indicators: groundwater recharge, storage, and abstractions, surface runoff, climatic water balance, water-intensity of crops, and groundwater-dependent ecosystems. Each indicator is spatially and temporally averaged to describe a recent trend on aquifer level, resulting in one complex attribute table for the 356 aquifers. GSI is calculated as the average of the normalized indicators for each aquifer, ranging from 0 (no water stress) to 1 (extreme water stress).</p><p>Aquifers are then grouped based on similarities in two classification parameters – degree of karstification (P1) and land cover (P2). Comparison of aquifers with similar classification parameters allows to focus more directly on the relationship between groundwater stress and climate, disregarding relatively constant influences. For each group (e.g., well-developed karst, primarily agriculturally used), we plot calculated GSI values with current temperature and precipitation data. By investigating four Shared Socioeconomic Pathways (SSPs) until 2100, we identify aquifers that mimic future climate conditions for others with similar P1 and P2. We then measure the difference in groundwater stress accompanied by altered climatic factors. This change is interpreted as vulnerability to climate change.</p><p>This approach, which relies on present-day observed conditions, allows us to predict the effect of a changing climate without the need to develop a complex numerical model, which requires large amounts of data and functional understanding of aquifer behavior. While analysis is currently ongoing, we expect both groundwater stress and vulnerabilities to be high. Predicted climate zone shifts by Beck et al. (2018) indicate that, out of 356 karst aquifers with Mediterranean climates, 52 could move to more extreme arid climate zones by 2100.</p><p>Results will be visualized in the form of vulnerability maps that may serve as an “early-warning system”. For particularly threatened aquifers, we will derive recommendations for more sustainable management by suggesting strategies to lower groundwater stress. This is done by taking a closer look at the aquifer’s indicator values and identifying factors that currently contribute the most to groundwater stress.</p>


2021 ◽  
Vol 26 (2) ◽  
pp. 99-109
Author(s):  
Binod Dawadi ◽  
Shankar Sharma ◽  
Kalpana Hamal ◽  
Nitesh Khadka ◽  
Yam Prasad Dhital ◽  
...  

Climate change studies of the high mountain areas of the central Himalayan region are mostly represented by the meteorological stations of the lower elevation. Therefore, to validate the climatic linkages, daily observational climate data from five automated weather stations (AWS) at elevations ranging from 2660 m to 5600 m on the southern slope of Mt. Everest were examined. Despite variations in the means and distribution of daily, 5-day, 10-day, and monthly temperature and precipitation between stations located at a higher elevation and their corresponding lower elevation, temperature records in the different elevations are highly correlated. In contrast, the precipitation data shows a comparatively weaker correlation. The slopes of the regression model (0.82–1.13) with (R2>0.74) for higher altitude (5050 m and 5600 m) throughout the year, 0.83–1.12 (R2>0.68) except late monsoon season for the station at 4260 m and 5050 m asl indicated the similar variability of the temperature between those stations. Similarly, Namche (3570 m) temperature changes by 0.81–1.32°C per degree change in corresponding lower elevation Lukla station (2660 m), except for monsoon season. However, inconsistent variation was observed between the station with a large altitudinal difference (2940 m) at Lukla and Kala Patthar (5600 m). In general, climate records from corresponding lower elevation can be used to quantitatively assess climatic information of the high elevation areas on the southern slope of Mt. Everest. However, corrections are necessary when absolute values of climatic factors are considered, especially in snow cover and snow-free areas. This study will be beneficial for understanding the high-altitude climate change and impact studies.


2020 ◽  
Vol 6 (9) ◽  
pp. 1715-1725 ◽  
Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Climate change is an important environmental issue, as progression of melting glaciers and snow cover is sensitive to climate alteration. The aim of this research was to model climate alterations forecasts, and to assess potential changes in snow cover and snow-melt runoff under the different climate change scenarios in the case study of the Zayandeh-rud River Basin. Three cluster models for climate change (NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0) were applied under RCP 8.5, 4.5 and 2.6 scenarios, to examine climate influences on precipitation and temperature in the basin. Temperature and precipitation were determined for all three scenarios for four periods of 2021-2030, 2031-2040, 2041-2050 and 2051-2060. MODIS (MOD10A1) was also applied to examine snow cover using temperature and precipitation data. The relationship between snow-covered area, temperature and precipitation was used to forecast future snow cover. For modeling future snow melt runoff, a hydrologic model of SRM was used including input data of precipitation, temperature and snow cover. The results indicated that all three RCP scenarios lead to an increase in temperature, and reduction in precipitation and snow cover. Investigation in snowmelt runoff throughout the observation period (November 1970 to May 2006) showed that most of annual runoff is derived from snow melting. Maximum snowmelt runoff is generated in winter. The share of melt water in the autumn and spring runoff is estimated at 35 and 53%, respectively. The results of this study can assist water manager in making better decisions for future water supply.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3293
Author(s):  
Zengchuan Dong ◽  
Wenhao Jia ◽  
Ranjan Sarukkalige ◽  
Guobin Fu ◽  
Qing Meng ◽  
...  

Trend detection based on hydroclimatological time series is crucial for understanding climate change. In this study, the innovative trend analysis (ITA) method was applied to investigate trends in air temperature and precipitation over the Jinsha River Basin (JRB), China, from 1961 to 2016 based on 40 meteorological stations. Climatic factors series were divided into three categories according to percentile, and the hidden trends were evaluated separately. The ITA results show that annual and seasonal temperatures have significantly increased whereas the variation range of annual temperature tended to narrow. Spatial pattern analysis of the temperature indicates that high elevation areas show more increasing trends than flat areas. Furthermore, according to ITA, significant increase trends are observed in annual precipitation and “high” category of spring precipitation. The sub-basins results show a significant decreasing trend in elevation zones of ≤2000 m and an increasing trend where elevation is >2000 m. Moreover, linkage between temperature and precipitation was analyzed and the potential impact of the combined changes was demonstrated. The results of this study provide a reference for future water resources planning in the JRB and will help advance the understanding of climate change in similar areas.


Sign in / Sign up

Export Citation Format

Share Document