scholarly journals Next-Generation Smart Response Web (NG-SRW): An Operational Spatial Decision Support System for Maritime Oil Spill Emergency Response in the Gulf of Finland (Baltic Sea)

2021 ◽  
Vol 13 (12) ◽  
pp. 6585
Author(s):  
Mihhail Fetissov ◽  
Robert Aps ◽  
Floris Goerlandt ◽  
Holger Jänes ◽  
Jonne Kotta ◽  
...  

The Baltic Sea is a unique and sensitive brackish-water ecosystem vulnerable to damage from shipping activities. Despite high levels of maritime safety in the area, there is a continued risk of oil spills and associated harmful environmental impacts. Achieving common situational awareness between oil spill response decision makers and other actors, such as merchant vessel and Vessel Traffic Service center operators, is an important step to minimizing detrimental effects. This paper presents the Next-Generation Smart Response Web (NG-SRW), a web-based application to aid decision making concerning oil spill response. This tool aims to provide, dynamically and interactively, relevant information on oil spills. By integrating the analysis and visualization of dynamic spill features with the sensitivity of environmental elements and value of human uses, the benefits of potential response actions can be compared, helping to develop an appropriate response strategy. The oil spill process simulation enables the response authorities to judge better the complexity and dynamic behavior of the systems and processes behind the potential environmental impact assessment and thereby better control the oil combat action.

Baltica ◽  
2014 ◽  
Vol 27 (special) ◽  
pp. 15-22 ◽  
Author(s):  
Alexander Kileso ◽  
Boris Chubarenko ◽  
Petras Zemlys ◽  
Igor Kuzmenko

The state-of-art in oil spill modelling methods is summarized, focusing on development since 2000. Some recommendations for possible application of these methods to the south–eastern part of the Baltic Sea are prepared. Particular attention is paid on the methods of parameterization of volume of oil spill and calculation of advection of the oil spills. Consideration is also given to methods used in oil weathering models.


1991 ◽  
Vol 1991 (1) ◽  
pp. 667-671
Author(s):  
Bernt Jansson ◽  
Jarl Johansson

ABSTRACT Due to the special circumstances of the Baltic Sea—brackish water, low temperatures, ice, and widespread archipelagos—special oil spill response and cleanup methods and equipment have proven to be necessary. The Swedish Government therefore commissioned the Swedish National Board of Technical Development to establish a research and development program involving the six authorities that are responsible for the country's environmental protection. The first step in this program was a common document, Policy Guidelines for Swedish Maritime Oil Spill Protection in the 1990s, with high-priority strategies according to which all subsequent development has been carried out. The program has produced methods and systems ranging from those for handling oil spills at sea and from leaking wrecks, to protection against and deflection of oil from sensitive areas, and cleanup operations in the beach zone.


Baltica ◽  
2014 ◽  
Vol 27 (special) ◽  
pp. 3-8 ◽  
Author(s):  
Sergej Suzdalev ◽  
Saulius Gulbinskas ◽  
Vadim Sivkov ◽  
Tatiana Bukanova

The Baltic Sea is facing exceptionally intensive marine traffic. Oil products in addition to other cargo types are being transported in this marine area. Therefore, the risk of potential oil pollution is very high. Although, the Baltic Sea has not experienced catastrophic oil spills, there have been spills causing serious environmental damage in the region. Construction of oil terminals and planned growth of Russian oil export through Baltic Sea ports along with the operation of large oil enterprises and oil drilling platforms make maritime safety a priority task for the Baltic Sea region. The publications collected in present Baltica Journal Special Issue set sights on the improvement of oil spill management in the South–Eastern Baltic Sea as well as stimulate the appearance of new transnational response agreements in the region.


1993 ◽  
Vol 1993 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Dale Ferriere

ABSTRACT Lessons learned from past U.S. oil spill response histories show that prudent waste management principles have not been a primary consideration in making decisions for tactical response to major open-water oil spills. Contingency planners (government and industry) consistently choose a mechanical response strategy usually resulting in significant shoreline impact and waste generation (secondary pollution from response actions). Generally, the Environmental Protection Agency's waste minimization hierarchy is not used when managing a major open-water oil spill, subsequent cleanup of oiled shorelines, response to oiled wildlife, and final disposal of oily waste. Contingency plans do not adequately weigh the ecological ramifications from response-generated waste and response-generated pollution when deciding how to protect the environment. This paper shows how the EPA's waste minimization hierarchy should be used during all phases of an oil spill response: strategic planning, tactical planning, and response execution.


Author(s):  
Alexander Ermolov ◽  
Alexander Ermolov

International experience of oil spill response in the sea defines the priority of coastal protection and the need to identify as most valuable in ecological terms and the most vulnerable areas. Methodological approaches to the assessing the vulnerability of Arctic coasts to oil spills based on international systems of Environmental Sensitivity Index (ESI) and geomorphological zoning are considered in the article. The comprehensive environmental and geomorphological approach allowed us to form the morphodynamic basis for the classification of seacoasts and try to adapt the international system of indexes to the shores of the Kara Sea taking into account the specific natural conditions. This work has improved the expert assessments of the vulnerability and resilience of the seacoasts.


1995 ◽  
Vol 35 (1) ◽  
pp. 830
Author(s):  
D.J. Blackmore

It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia.The National Plan to Combat Pollution of the Sea by Oil, the umbrella oil spill response plan for Australia, is a combined effort by the Commonwealth and State Governments, the oil industry and the shipping industry.The Australian Marine Oil Spill Centre (AMOSC), formed in 1991, is an industry centre set up for rapid response with equipment and resources, together with a training and industry coordination role.A review of the National Plan in 1992, identified, amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to Australia's oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response.The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


1991 ◽  
Vol 1991 (1) ◽  
pp. 81-86
Author(s):  
Klavs Bender ◽  
Preben Østfeldt ◽  
Hanne Bach

ABSTRACT In 1986 an oil and gas concession in the Baltic Sea was granted by the Danish Ministry of Energy to a group of oil companies, with Norsk Hydro as operator. A paper describing the goals achieved midway through the program was presented at the 1989 Oil Spill Conference in San Antonio, Texas. This paper presents the final results of the program. The chemical baseline study has shown that the only parameter that exhibits a marked variation is the total hydrocarbon content, where values are seven to eight times higher in the 1989 samples than in the 1987 and 1988 samples. It is suspected that the reason is seasonal variation, since the 1989 samples were collected in June, while the 1987 and 1988 samples were collected in September. Even though the total hydrocarbon content varies significantly between some of the sample suites, only biomarkers related to recent organic material or immature petroleum source rocks are present in the samples. Petrogenic hydrocarbons related to spilled crude oil or exploration activities were not found in the area. The spreading and weathering calculations revealed the zones along the coast where an oil spill was most likely to occur. The transport time for an oil spill to reach the coast was also calculated by the model. In combination with mapping of sensitive resources, the results from the model test runs were used in risk assessments. The information gained in this study was used in the oil spill contingency plan.


Sign in / Sign up

Export Citation Format

Share Document