scholarly journals D-distance Risk Factor for Transmission Line Maintenance Management and Cost Analysis

2021 ◽  
Vol 13 (15) ◽  
pp. 8208
Author(s):  
Waraporn Luejai ◽  
Thanapong Suwanasri ◽  
Cattareeya Suwanasri

In this paper, a D-distance risk factor was proposed to prioritize high-voltage transmission lines from high to low risk in transmission line maintenance and renovation management. Various conditions and importance assessment criteria together with the weighting and scoring method were proposed to calculate both the renovation and importance indices of transmission lines. The scores of different test methods and visual inspection were differentiated from zero to five as end-of-life to very good condition to evaluate the condition of the line and its components. Additionally, the scores of different importance criteria were modified to assess the line importance from low to high importance. Moreover, the analytic hierarchy process was applied to determine the important weight of all test methods and importance criteria, which were evaluated by utility experts. The renovation and importance indices were combined in a risk matrix to finally determine the risk of the line by using the D-distance technique. Later, the risk of every transmission line was plotted in a risk matrix to prioritize and manage maintenance tasks. Finally, a maintenance cost was analyzed by applying the D-distance risk factor and compared with the replacement cost of a new transmission line for maintenance planning and cost minimization. Twenty out of 115, 230 and 500 kV transmission lines fleet in Thailand were practically analyzed with actual data. The results were realistic to feasibly implement in a transmission system for sustainable management.

2013 ◽  
Vol 347-350 ◽  
pp. 1907-1914
Author(s):  
Qiang Wang ◽  
Shu Ting Song ◽  
Hui Ming Zhang ◽  
Da Hai Yao

Transmission line flashing will cause large area and long time of blackouts,it happens in the working voltage,and it poses serious threat to the electric power system. With the development of industry,the increase of power grid capacity and rated voltage level,there are more and more flashing accidents occurred in the power system of power transmission and transformation equipment external insulation,also the damage that they bring about to our economy is getting larger.Aiming at a series of problems caused by transmission line flashing,this paper comes up with an assessment method of transmission line flashing,it improves the forecast accuracy and efficiency so as to ensure the safety operation of transmission.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 977
Author(s):  
Cattareeya Suwanasri ◽  
Surapol Saribut ◽  
Thanapong Suwanasri ◽  
Rattanakorn Phadungthin

In this paper, we apply the Failure Modes, Effects, and Criticality Analysis (FMECA) approach to the criticality and risk analysis of the efficiency, safety/reliability, environment, and financial criteria of the high voltage transmission line. In the efficiency analysis, the weighting-scoring method and analytical hierarchy process are applied to obtain the line renovation index, which is interpreted as efficiency severity. The safety/reliability severity relates to the system impacts are caused by failure of the equipment and the system. The environmental severity takes social impacts and pollution into consideration. The financial severity involves the cost of spare parts and maintenance costs, which are interpreted as the financial severity of the lines. Twenty practical transmission lines in Thailand with actual data for 115, 230, and 500 kV were studied. The transmission line components are divided into eight components including the conductor, conductor accessories, insulator, steel structure, foundation, lightning protection system, tower accessories, and right-of-way. The severity and criticality of the components and transmission lines are analyzed and plotted in criticality matrices based on four criteria. This criticality matrix is presented at four different levels including very low, low, medium, and high risk, as represented by four color bands: green, yellow, orange, and red, respectively. The results show that three 115 kV lines are the first priority for short-term reconstruction planning because of their unacceptable condition and high risk in terms of safety/reliability and financing. Recommendations for maintenance strategy and risk mitigation are proposed for the utility according to the utility’s actual criticality. Ultimately, maintenance planning of the transmission system can be effectively managed with higher reliability, a lower risk of failure, and a lower cost of maintenance.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


Author(s):  
N. B. Rubtsova ◽  
A. Y. Tokarskiy

The main problems of overhead and cable transmission lines with voltage >=110 kV electric and magnetic fields general public protection are presented. It is shown that it is necessary to develop regulatory requirements for these lines’ sanitary protection zones organization, taking into account the magnetic field component, because its possible health risk factor, up to carcinogenic.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1561
Author(s):  
Hao Chen ◽  
Zhongnan Qian ◽  
Chengyin Liu ◽  
Jiande Wu ◽  
Wuhua Li ◽  
...  

Current measurement is a key part of the monitoring system for power transmission lines. Compared with the conventional current sensor, the distributed, self-powered and contactless current sensor has great advantages of safety and reliability. By integrating the current sensing function and the energy harvesting function of current transformer (CT), a time-multiplexed self-powered wireless sensor that can measure the power transmission line current is presented in this paper. Two operating modes of CT, including current sensing mode and energy harvesting mode, are analyzed in detail. Through the design of mode-switching circuit, harvesting circuit and measurement circuit are isolated using only one CT secondary coil, which eliminates the interference between energy harvesting and current measurement. Thus, the accurate measurement in the current sensing mode and the maximum energy collection in the energy harvesting mode are both realized, all of which simplify the online power transmission line monitoring. The designed time-multiplexed working mode allows the sensor to work at a lower transmission line current, at the expense of a lower working frequency. Finally, the proposed sensor is verified by experiments.


Author(s):  
Baina He ◽  
Yadi Xie ◽  
Jingru Zhang ◽  
Nirmal-Kumar C. Nair ◽  
Xingmin He ◽  
...  

Abstract In the transmission line, the series compensation device is often used to improve the transmission capacity. However, when the fixed series capacitor (FSC) is used in high compensation series compensation device, the stability margin cannot meet the requirements. Therefore, thyristor controlled series compensator (TCSC) is often installed in transmission lines to improve the transmission capacity of the line and the stability of the system. For cost considerations, the hybrid compensation mode of FSC and TCSC is often adopted. However, when a single-phase grounding fault occurs in a transmission line with increased series compensation degree, the unreasonable distribution of FSC and TCSC will lead to the excessive amplitude of secondary arc current, which is not conducive to rapid arc extinguishing. To solve this problem, this paper is based on 1000 kV Changzhi-Nanyang-Jingmen UHV series compensation transmission system, using PSCAD simulation program to established UHV series compensation simulation model, The variation law of secondary arc current and recovery voltage during operation in fine tuning mode after adding TCSC to UHV transmission line is analyzed, and the effect of increasing series compensation degree on secondary arc current and recovery voltage characteristics is studied. And analyze the secondary arc current and recovery voltage when using different FSC and TCSC series compensation degree schemes, and get the most reasonable series compensation configuration scheme. The results show that TCSC compensation is more beneficial to arc extinguishing under the same series compensation. Compared with several series compensation schemes, it is found that with the increase of the proportion of TCSC, the amplitude of secondary arc current and recovery voltage vary greatly. Considering various factors, the scheme that is more conducive to accelerating arc extinguishing is chosen.


2012 ◽  
Vol 610-613 ◽  
pp. 2813-2818
Author(s):  
Xian Long Lu ◽  
Zeng Zhen Qian

This paper presents the concept and the fundamental issues and the development on the environmental geotechnology in transmission lines foundation engineering. Namely, environmental geotechnology and theory is to study the restriction effects of environment on the transmission line routes, foundation selection and reliability, to predict the results of transmission line foundation construction on the environment, and to study on countermeasures of environmental protection in transmission foundation engineering. And then, from the above three aspects, the design method combined strength and displacement for tower foundation, the selection on foundation types and technical scheme for transmission line tower, and the countermeasures for soil and water conservation, the author introduces the development and practice of environmental geotechnology for transmission lines foundation engineering in China.


2013 ◽  
Vol 805-806 ◽  
pp. 851-854
Author(s):  
Zhi Ge Jia ◽  
Zhao Sheng Nie ◽  
Wei Wang ◽  
Xiao Guan ◽  
Di Jin Wang

This work describes the field testing process of Global Navigation Satellite System (GNSS) receiver under 220KV, 500KV UHV transmission line and standard calibration field. Analysis for GNSS data results shows that the radio interference generated by EHV transmission lines have no effect on GNSS receiver internal noise levels and valid GNSS observation rate. Within 50 meters of the EHV transmission lines, the multi-path effects (mp1 and mp2 value) significantly exceeded the normal range and becomes larger with the increase of the voltage .outside 50 meters of the EHV transmission line, the multi-path effects have almost no effect on the high-precision GNSS observations.


2021 ◽  
Author(s):  
Khaled Ahmed Farouk Mohamed

Abstract Maintenance is a crucial pillar in plant integrity and availability. Saving money in maintenance should be established without affecting the asset's integrity. Based on this, the core of work is to maximize the maintenance return on investment (ROI). Maintenance ROI is the ratio between invested money in maintenance to mitigated risks due to maintenance actions. The objective is to minimize maintenance cost while maximizing assets integrity and availability. RBMO starts with ‘Maintenance Criticality Assessment’ (MCA) at unit/system level to define high (20 % of systems that represent 80% of risks), medium (20% of systems that represent 15% of risks), and low critical systems (60% of systems that represent only 5% of risks). Based on system criticality, a dedicated risk assessment is implemented to evaluate risks at tag level to define the worst maintenance action/s. High critical systems’ maintenance programs are developed using ‘Reliability-Centered Maintenance’ (RCM). Medium critical system maintenance program is developed using ‘Failure Mode, Effects and criticality analysis’ (FMECA). "Maintenance strategy for Low Critical item" guideline document is developed to define the best maintenance strategy for low critical units. All risks are evaluated using the standard ADNOC risk matrix. The risk is converted to monetary value in $ to evaluate maintenance actions using a formula. A special program was developed to facilitate MCA evaluation for each system and represent risk as monetary value using ADNOC Risk Matrix taking into consideration the redundancy and demand on a system during operation. MCAs were completed for all ADNOC Onshore Assets, see results below. Optimization starts by evaluating maintenance programs for low critical systems to save costs where low critical systems represent 50% to 60% of total systems in ADNOC Onshore. Based on this the total number of work orders has decreased by 6856, which is equivalent to saving $1M annually. In parallel, RCMs are conducted on high critical systems. Risk mitigation calculator in $ value was developed and embedded in the RCM information sheet to calculate cost benefit from implementing maintenance programs that were developed. RBMO is a systematic and traceable methodology to minimize maintenance cost and at the same time maximize system integrity and availability. This work showed the importance of reviewing the low critical systems’ maintenance program, as a first step in RBMO after implementing MCA, where low critical systems represent 50% to 60% of total assets and only 5% of total risks. ADNOC Onshore developed a dedicated guideline document "Maintenance Strategy for Low Critical Item" to facilitate decision making for proper maintenance strategy for low critical systems. Adding RCM risk mitigation calculator to RCM to calculate RCM cost benefit.


Sign in / Sign up

Export Citation Format

Share Document