scholarly journals Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester

2021 ◽  
Vol 13 (17) ◽  
pp. 9606
Author(s):  
Van Hong Thi Pham ◽  
Jeongyoon Ahn ◽  
Jaisoo Kim ◽  
Sangbeom Lee ◽  
Ingyu Lee ◽  
...  

The production of volatile fatty acids (VFAs) from waste stream has been recently getting attention as a cost-effective and environmentally friendly approach in mechanical–biological treatment plants. This is the first study to explore the use of a functional bacterium, AM5 isolated from forest soil, which is capable of enhancing the production of VFAs in the presence of soil bacteria as a co-digester in non-strict anaerobic fermentation processes of food waste leachates. Batch laboratory-scale trials were conducted under thermophilic conditions at 55 °C and different pH values ranging from approximately 5 to 11, as well as under uncontrolled pH for 15 days. Total solid content (TS) and volatile solid content (VS) were observed with 58.42% and 65.17% removal, respectively. An effluent with a VFA concentration of up to 33,849 mg/L (2365.57 mg/g VS; 2244.45 mg/g chemical oxygen demand (COD)-VFA VS; 1249 mg/g VSremoved) was obtained at pH 10.5 on the second day of the batch culture. The pH resulted in a significant effect on VFA concentration and composition at various values. Additionally, all types of VFAs were produced under pH no-adjustment (approximately 5) and at pH 10.5. This research might lead to interesting questions and ideas for further studies on the complex metabolic pathways of microbial communities in the mixture of a soil solution and food waste leachate.

2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


2011 ◽  
Vol 28 (12) ◽  
pp. 2287-2292 ◽  
Author(s):  
Mi Jin Yu ◽  
Yong-Beom Jo ◽  
Sang-Guk Kim ◽  
Young-Kwan Lim ◽  
Jong-Ki Jeon ◽  
...  

2017 ◽  
Vol 27 (8) ◽  
pp. 1513-1518
Author(s):  
Jingyeong Shin ◽  
Young Beom Kim ◽  
Jong Hun Jeon ◽  
Sangki Choi ◽  
In Kyu Park ◽  
...  

2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Ji Su Bae ◽  
Yeo Myung Yoon ◽  
Seon Kyoung Shin ◽  
Dong Jin Lee ◽  
Dong Cheol Seo

Abstract The objective of this study was to determine methane yields (MY) of organic wastes in biogasification facilities according to the mixing ratio of food waste/food waste leachate and sewage sludge. One biogasification facility that treated sewage sludge only was compared with three biogasification facilities treating sewage sludge and food waste. The theoretical MY was derived based on analyses of carbohydrate, fat, and protein to examine the efficiency of the biogasification facility. The average actual MY was 0.424 Sm3CH4/kg volatile solids, which corresponded to 83.7% of theoretical MY. In the case of combined anaerobic digestion (CD) mixing with food waste/food waste leachate, inhibitory factors (volatile fatty acids [VFAs], total nitrogen [TN], and organic matter contents) showed the tendency to have relatively higher values in CD facilities than in the biogasification facility treating sewage sludge only. Mean concentrations of VFAs and TN in the anaerobic digester effluent, and the organic loading rate were 406 mg/L, 3,721 mg/L, and 1.62 kg volatile solids/m3 day, respectively. The influence of anaerobic digester effluent was in charge of 10% within the influent environmental loading rate from the sewage treatment plants associated with the biogasification facilities. Analyses of the microbial community showed that a remarkable change in the structure of methanogens was directly related to different MY in each plant. In particular, Methanoculleus and Methanosaeta increased with an increasing ratio of food waste/food waste leachate to sludge, while Methanococcus and Methanosarcina decreased. In conclusion, CD showed steady operational conditions and high efficiency of MY by injecting food waste/food waste leachate into the anaerobic digester. It met the current criteria for integrated treatment of organic waste in biogasification facilities in South Korea.


Sign in / Sign up

Export Citation Format

Share Document