scholarly journals A Sine Cosine Algorithm-Based Fractional MPPT for Thermoelectric Generation System

2021 ◽  
Vol 13 (21) ◽  
pp. 11650
Author(s):  
Hegazy Rezk ◽  
Mohammed Mazen Alhato ◽  
Mujahed Al-Dhaifallah ◽  
Soufiene Bouallègue

Thermoelectric generators (TEGs) are equipment for transforming thermal power into electricity via the Seebeck effect. These modules have gained increasing interest in research fields related to sustainable energy. The harvested energy is mostly reliant on the differential temperature between the hot and cold areas of the TEGs. Hence, a reliable maximum power point tracker is necessary to operate TEGs too close to their maximum power point (MPP) under an operational and climate variation. In this paper, an optimized fractional incremental resistance tracker (OF-INRT) is suggested to enhance the output performance of a TEG. The introduced tracker is based on the fractional-order PIλDμ control concepts. The optimal parameters of the OF-INRT are determined using a population-based sine cosine algorithm (SCA). To confirm the optimality of the introduced SCA, experiments were conducted and the results compared with those of particle swarm optimization- (PSO) and whale optimization algorithm (WOA) -based techniques. The key goal of the suggested OF-INRT is to overcome the two main issues in conventional trackers, i.e., the slow dynamics of traditional incremental resistance trackers (INRT) and the high steady-state fluctuation around the MPP in the prevalent perturb and observe trackers (POTs). The main findings prove the superiority of the OF-INRT in comparison with the INRT and POT, for both dynamic and steady-state responses.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Yu-Hsu Lee

The purpose of this paper is to study on a novel maximum power point tracking (MPPT) method for photovoltaic (PV) systems. First, the simulation environment for PV systems is constructed by using PSIM software package. A 516 W PV system established with Kyocera KC40T photovoltaic modules is used as an example to finish the simulation of the proposed MPPT method. When using incremental conductance (INC) MPPT method, it usually should consider the tradeoff between the dynamic response and the steady-state oscillation, whereas the proposed modified incremental conductance method based on extension theory can automatically adjust the step size to track the maximum power point (MPP) of PV array and effectively improve the dynamic response and steady-state performance of the PV systems, simultaneously. Some simulation and experimental results are made to verify that the proposed extension maximum power point tracking method can provide a good dynamic response and steady-state performance for a photovoltaic power generation system.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5590
Author(s):  
Chih-Chiang Hua ◽  
Yu-Jun Zhan

This paper proposes a hybrid maximum power point tracking (MPPT) method with zero oscillation in steady-state by combining genetic algorithm (GA) and perturbation and observation (P&O) method. The proposed MPPT can track the global maximum power point (GMPP) fast for a photovoltaic (PV) system even under partial shaded conditions (PSC). The oscillations around the GMPP are eliminated and the power loss can be reduced significantly. In addition, the proposed MPPT can make the PV system operate at the highest efficiencies under various atmospheric conditions. During the MPP tracking, the system will oscillate around the MPPs, resulting in unnecessary power loss. To solve the problem, the artificial intelligence (AI) algorithms, such as PSO, Bee Colony optimization, GA, etc., were developed to deal with this issue. However, the problem with the AI algorithm is that the time for convergence may be too long if the range of the MPP search space is large. In addition, if the atmospheric conditions change fast, the PV system may operate at or close to the local maximum power points (LMPPs) for a long time. In this paper, a method combining the P&O’s fast tracking and GA’s GMPP tracking ability is proposed. The proposed system can stop the oscillations as soon as the GMPP is found, thus minimizing the power loss due to oscillations. The proposed MPPT can achieve superior performance while maintaining the simplicity of implementation. Finally, the simulation and experimental results are presented to demonstrate the feasibility of the proposed system.


2014 ◽  
Vol 1 ◽  
pp. 618-621
Author(s):  
Masaya MURAOKA ◽  
Noriaki MIKAMI ◽  
Toshimichi SAITO

2013 ◽  
Vol 347-350 ◽  
pp. 1833-1838
Author(s):  
Ping Wang ◽  
Zhe Zhou ◽  
Meng Meng Cai ◽  
Jing Bin Zhang

This paper presents an improved multistage variable-step incremental conductance method to achieve the maximum power point tracking (MPPT). Compared with the traditional variable-step incremental conductance method, this improved algorithm optimizes the selection of the step size so that the tracking of the maximum power point is more quickly and the steady-state performance is better. Furthermore, the algorithm can still guarantee the quickness and accuracy of MPPT when the environmental conditions change suddenly and tremendously. At last, matlab simulation was applied to compare the characteristics of multistage variable-step algorithm with that of the other. And the simulation results verified that the improved algorithm has better dynamic and steady-state performance.


2019 ◽  
Vol 11 (21) ◽  
pp. 5891 ◽  
Author(s):  
Kim ◽  
Huh ◽  
Ko

This paper proposes the method for maximum power point tracking (MPPT) of the photovoltaic (PV) system. The conventional PI controller controls the system with fixed gains. Conventional PI controllers with fixed gains cannot satisfy both transient and steady-state. Therefore, to overcome the shortcomings of conventional PI controllers, this paper presents the variable gain proportional integral (VGPI) controllers that control the gain value of PI controllers using fuzzy control. Inputs of fuzzy control used in the VGPI controller are the slope from the voltage-power characteristics of the PV module. This paper designs fuzzy control's membership functions and rule bases using the characteristics that the slope decreases in size, as it approaches the maximum power point and increases as it gets farther. In addition, the gain of the PI controller is adjusted to increase in transient-state and decrease in steady-state in order to improve the error in steady-state and the tracking speed of maximum power point of the PV system. The performance of the VGPI controller has experimented in cases where the solar radiation is constant and the solar radiation varies, to compare with the performance of the P&O method, which is traditionally used most often in MPPT, and the performance of the PI controller, which is used most commonly in the industry field. Finally, the results from the experiment are presented and the results are analyzed.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4531
Author(s):  
N. Kanagaraj ◽  
Hegazy Rezk ◽  
Mohamed R. Gomaa

Thermoelectric generation technology is considered to be one of the viable methods to convert waste heat energy directly into electricity. The utilization of this technology has been impeded due to low energy conversion efficiency. This paper aims to improve the energy conversion efficiency of the thermoelectric generator (TEG) model with a novel maximum power point tracking (MPPT) technique. A variable fractional order fuzzy logic controller (VFOFLC)-based MPPT technique is proposed in the present work in which the operating point of the TEG is moved quickly towards an optimal position to increase the energy harvesting. The fraction order term α, introduced in the MPPT algorithm, will expand or contract the input domain of the fuzzy logic controller (FLC to shorten the tracking time and maintain a steady-state output around the maximum power point (MPP). The performance of the proposed MPPT technique was verified with the TEG model by simulation using MATLAB /SIMULINK software. Then, the overall performance of the VFOFLC-based MPPT technique was analyzed and compared with Perturb and observe (P&O) and incremental resistance (INR)-based MPPT techniques. The obtained results confirm that the proposed MPPT technique can improve the energy conversion efficiency of the TEG by harvesting the maximum power within a shorter time and maintaining a steady-state output when compared to other techniques.


Sign in / Sign up

Export Citation Format

Share Document