scholarly journals Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt

2021 ◽  
Vol 13 (24) ◽  
pp. 13828
Author(s):  
Yu Wang ◽  
Roaa H. Latief ◽  
Hasan Al-Mosawe ◽  
Hussein K. Mohammad ◽  
Amjad Albayati ◽  
...  

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% by the weight of FNS of the size passing sieve No. 50. Experimental tests were conducted on the mixes to compare their Marshall properties, resilient moduli, rutting and fatigue resistance, and moisture susceptibility. Finally, a performance analysis was carried out using the VESYS 5W software on the constructed pavement using the IFW mixes. Both the experiment and the modeling work demonstrated that IFW can be an effective alternative resource for replacing natural fine aggregate in WMA concrete and provided details on the optimum rate based on the comprehensive data obtained first hand.

Author(s):  
Biswajit K. Bairgi ◽  
Md Amanul Hasan ◽  
Rafiqul A. Tarefder

In the asphalt foaming process, the foaming water content (FWC) controls the formation and characteristics of water bubbles. These water bubbles are expected to be expelled from the foamed warm mix asphalt (WMA) during mixing and compaction. However, foaming water may not be completely expelled, rather some of the microbubbles may be trapped in the foamed WMA even after compaction. These microbubbles, or undissipated water, can diffuse over time and cause damage to the foamed WMA. To this end, this study has determined the effects of foaming on the fatigue, moisture damage, and permanent deformation characteristics of foamed WMA. Foamed asphalt and mixtures were designed with varying FWCs and they were tested using linear amplitude sweep, multiple stress creep recovery, four-point flexural beam, and Hamburg wheel tracking tests. Primarily, asphalt foaming dynamics were assessed with a laser-based non-contact method. A simplified viscoelastic continuum damage concept and a three-phase permanent deformation model were used for damage evaluation. The study reveals that foaming softens the binder, which results in slightly higher rutting and moisture susceptibility, though an equivalent or slightly improved fatigue characteristic compared with the regular hot mix asphalt.


2018 ◽  
Vol 34 ◽  
pp. 01026
Author(s):  
Ahmad Kamil Arshad ◽  
Haryati Awang ◽  
Ekarizan Shaffie ◽  
Wardati Hashim ◽  
Zanariah Abd Rahman

Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.


2016 ◽  
Vol 28 (2) ◽  
pp. 05015002 ◽  
Author(s):  
Lorena Garcia Cucalon ◽  
Fan Yin ◽  
Amy Epps Martin ◽  
Edith Arambula ◽  
Cindy Estakhri ◽  
...  

2020 ◽  
Vol 9 (9) ◽  
pp. e69996773
Author(s):  
Maria Gabriela Araujo Ranieri ◽  
Maria Auxiliadora de Barros Martins ◽  
Patrícia Capellato ◽  
Mirian de Lourdes Noronha Motta Melo ◽  
Adilson da Silva Mello

The modern lifestyle has led to an increase in the amount of solid waste in the world, and waste tires are one of the most generated. Annually billions of tons of waste tires are produced, so in this study, we sought to reuse them to make materials for civil construction. For this, a laboratory research was carried out where samples were made in 50 x 100 mm cylinders with traces of 0, 10, 15 and 20% (by weight) of waste, in addition to cement, natural sand and water. The granulometric distribution of waste tires and sand was also carried out. And, with the samples in cylinders, the physical and mechanical properties were evaluated, such as water absorption and apparent density, in addition to the analysis of the mechanical resistance to compression and the modulus of elasticity. The results showed that the granulometric distribution of the tire residue fits as a fine aggregate, similar to the sand granulometry. The water absorption rate of the waste specimens was less than 10%. However, the mechanical resistance decreases proportionally as the amount of tire waste has increased. However, when analyzing the behavior of the stress x strain curves, the specimens containing residues, became more flexible, as they are capable of supporting loads beyond the maximum stress. In this way, the resistance and the ability to absorb energy were increased. We concluded that it is possible to incorporate certain quantities of waste tires in blocks for civil construction, but without a structural function.


2010 ◽  
Vol 4 (1) ◽  
pp. 65-71 ◽  
Author(s):  
M. Mageswari ◽  
Dr. B. Vidivelli

Sheet glass powder (SGP) used in concrete making leads to greener environment. In shops, near by Chidambaram many sheet glass cuttings go to waste, which are not recycled at present and usually delivered to landfills for disposal. Using SGP in concrete is an interesting possibility for economy on waste disposal sites and conservation of natural resources. This paper examines the possibility of using SGP as a replacement in fine aggregate for a new concrete. Natural sand was partially replaced (10%, 20%, 30%, 40% and 50%) with SGP. Compressive strength, Tensile strength (cubes and cylinders) and Flexural strength up to 180 days of age were compared with those of concrete made with natural fine aggregates. Fineness modulus, specific gravity, moisture content, water absorption, bulk density, %voids, % porosity (loose and compact) state for sand (S) and SDA were also studied. The test results indicate that it is possible to manufacture concrete containing Sheet glass powder (SGP) with characteristics similar to those of natural sand aggregate concrete provided that the percentage of SGP as fine aggregate is limited to 10-20%, respectively.


2013 ◽  
Vol 10 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Kirsi Saarinen ◽  
Laura Frisk

Radio frequency identification tags (RFID) with anisotropic conductive adhesive (ACA) joints are used in various applications where the environmental conditions may impair their reliability. Thus the effects of different environmental stresses on reliability need to be investigated. The purpose of this work was to study whether a relatively simple shear stress model can be utilized in reliability prediction of anisotropically conductive paste (ACP) joints in an accelerated humidity test on the basis of the information obtained from another humidity test. If modeling gives accurate results when studying reliability, the need for actual testing would decrease and thereby time and cost savings could be achieved. In this study, finite element models were made to calculate shear stresses in ACP joints induced by two different humidity tests. Additionally, experimental tests were performed and the results were compared with those of modeling. The test samples were RFID tags whose microchips were attached with ACP. A constant humidity test was used to study the effects of high humidity level and a humidity cycling test was used to examine the effects of constantly varying humidity. In the modeling it was observed that the selection of the stress-free temperature has a significant effect on the results. With three different stress-free temperatures, three different sets of results were obtained. Although the tags saturated in the extreme conditions of the humidity cycling test, according to modeling, the change in relative humidity level in the humidity cycling test did not increase the harshness of the test. However, the temperature change in the humidity cycling test increased the harshness.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aysegul Petek Gursel ◽  
Claudia Ostertag

Aggregate consumption rates have now exceeded natural renewal rates, signaling shortages both locally and globally. Even more concerning is that the worldwide markets for construction aggregates are projected to grow at an annual rate of 5.2% in the near future. This increase is attributed to rapid population growth coupled with the economic development worldwide. In terms of material availability, one of the most vulnerable regions is the Asia-Pacific region specifically, Singapore, where there is higher demand but limited availability of natural sand and gravel for use as aggregates in concrete construction projects. This paper focuses mainly on the environmental impacts of fine aggregate alternatives used in high-strength concrete applications in Singapore, which is one of the major global importers of natural sand following China. Singapore has been experiencing political and environmental challenges linked to the shortage of natural sand use as aggregates, even while the demand is increasing in the construction sector. Copper slag, a readily available waste material from shipyards in Singapore, is a possible replacement material for a portion of the natural sand in concrete mixtures, thus sustaining the projected growth in the region. A life-cycle assessment approach is applied to investigate the environmental impacts of copper slag and its alternative use as natural sand in high-strength concrete applications in Singapore. The system boundary consists of the major production processes of concrete constituents (including Portland cement and fine and coarse aggregates, with CS considered as fine aggregate) from a cradle-to-gate perspective, consisting of relevant life-cycle phases of raw materials extraction, transportation, and production processes at the relevant facility where the production occurs. Output from the assessment is provided in terms of embodied energy use and air emissions of concrete mixes with varying percentages of copper slag as fine aggregate. Results show that environmental impacts of aggregates decrease with the increasing substitution rate of natural sand with copper slag when calculated on the basis per unit volume of the concrete mix. For example, 40% and 100% sand replacements with copper slag result in a reduction of 8% and 40% in embodied energy, 12% and 30% in global warming potential, 8% and 41% in acidification, and 7% and 35% in particulate matter formation, respectively. Normalized impacts (i.e., normalized with respect to compressive strength) are observed to remain at almost similar levels for concrete mixes with up to 40% natural sand having been replaced with copper slag. Therefore, it is recommended that replacement of fine aggregates by 40–50% of copper slag (by weight) will produce concrete mixtures with comparable environmental impacts while maintaining feasible durability and strength properties.


2011 ◽  
Vol 12 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Tamer M. Breakah ◽  
Jason P. Bausano ◽  
R. Christopher Williams ◽  
Stan Vitton

Sign in / Sign up

Export Citation Format

Share Document