scholarly journals Optimal Load and Energy Management of Aircraft Microgrids Using Multi-Objective Model Predictive Control

2021 ◽  
Vol 13 (24) ◽  
pp. 13907
Author(s):  
Xin Wang ◽  
Jason Atkin ◽  
Najmeh Bazmohammadi ◽  
Serhiy Bozhko ◽  
Josep M. Guerrero

Safety issues related to the electrification of more electric aircraft (MEA) need to be addressed because of the increasing complexity of aircraft electrical power systems and the growing number of safety-critical sub-systems that need to be powered. Managing the energy storage systems and the flexibility in the load-side plays an important role in preserving the system’s safety when facing an energy shortage. This paper presents a system-level centralized operation management strategy based on model predictive control (MPC) for MEA to schedule battery systems and exploit flexibility in the demand-side while satisfying time-varying operational requirements. The proposed online control strategy aims to maintain energy storage (ES) and prolong the battery life cycle, while minimizing load shedding, with fewer switching activities to improve devices lifetime and to avoid unnecessary transients. Using a mixed-integer linear programming (MILP) formulation, different objective functions are proposed to realize the control targets, with soft constraints improving the feasibility of the model. In addition, an evaluation framework is proposed to analyze the effects of various objective functions and the prediction horizon on system performance, which provides the designers and users of MEA and other complex systems with new insights into operation management problem formulation.

Author(s):  
Xin Wang ◽  
Jason Atkin ◽  
Najmeh Bazmohammadi ◽  
Serhiy Bozhko ◽  
and Josep M. Guerrero

Abstract: Safety issues related to the electrification of more electric aircraft (MEA) need to be addressed because of the increasing complexity of aircraft electrical power systems and the growing number of safety-critical sub-systems that need to be powered. Managing the energy storage systems and the flexibility in the load-side plays an important role in preserving the system’s safety when facing an energy shortage. This paper presents a system-level centralized operation management strategy based on model predictive control (MPC) for MEA to schedule battery systems and exploit flexibility in the demand-side while satisfying time-varying operational requirements. The proposed online control strategy aims to maintain energy storage (ES) and prolong the battery life cycle, while minimizing load shedding, with fewer switching activities to improve devices lifetime and to avoid unnecessary transients. Using a mixed-integer linear programming (MILP) formulation, different objective functions are proposed to realize the control targets, with soft constraints improving the robustness of the model. Besides, an evaluation framework is proposed to analyze the effects of various objective functions and the prediction horizon on system performance, which provides the designers and users of MEA and other complex systems with new insights into operation management problem formulation.


Author(s):  
Timothy O. Deppen ◽  
Andrew G. Alleyne ◽  
Kim A. Stelson ◽  
Jonathan J. Meyer

This paper presents a model predictive control approach to solving the energy management problem within a series hydraulic hybrid powertrain. The hydraulic hybrid utilizes a high pressure accumulator for energy storage which has superior power density than conventional battery technology. This makes fluid power attractive for urban driving applications in which there are frequent starts and stops and large startup power demands. Model predictive control was chosen for control design because this technique requires no information about the future drive cycle, which can be highly uncertain in urban settings. The proposed control strategy was validated experimentally using an electro-hydraulic powertrain testbed which includes energy storage. The experimental study demonstrates the controller’s ability to track a reference trajectory while achieving efficient engine operation.


Sign in / Sign up

Export Citation Format

Share Document