scholarly journals Effect of Anaerobic Digestate on the Fatty Acid Profile and Biodiesel Properties of Chlorella sorokiniana Grown Heterotrophically

2022 ◽  
Vol 14 (1) ◽  
pp. 561
Author(s):  
George Papapolymerou ◽  
Athanasios Kokkalis ◽  
Dorothea Kasiteropoulou ◽  
Nikolaos Gougoulias ◽  
Anastasios Mpesios ◽  
...  

The growth kinetics and the lipid and protein content of the microalgal species Chlorella sorokiniana (CS) grown heterotrophically in growth media containing glycerol and increasing amounts of anaerobic digestate (AD) equal to 0%, 15%, 30%, and 50% was studied. The effect of the AD on the fatty acid (FA) distribution of the bio-oil extracted from the CS, as well as on the fatty acid methyl ester (FAME) properties such as the saponification number (SN), the iodine value (IV), the cetane number (CN), and the higher heating value (HHV) was also estimated. The percentage of AD in the growth medium affects the rate of carbon uptake. The maximum carbon uptake rate occurs at about 30% AD. Protein and lipid content ranged from 32.3–38.4% and 18.1–23.1%, respectively. Fatty acid distribution ranged from C10 to C26. In all AD percentages the predominant fatty acids were the medium chain FA C16 to C18 constituting up to about 89% of the total FA at 0% AD and 15% AD and up to about 54% of the total FA at 30% AD and 50% AD. With respect to unsaturation, monounsaturated FA (MUFA) were predominant, up to 56%, while significant percentages, up to about 38%, of saturated FA (SFA) were also produced. The SN, IV, CN, and HHV ranged from 198.5–208.3 mg KOH/g FA, 74.5–93.1 g I/100 g FAME, 52.7–56.1, and 39.7–40.0 MJ/kg, respectively. The results showed that with increasing AD percentage, the CN values tend to increase, while decrease in IV leads to biofuel with better ignition quality.

2020 ◽  
Vol 150 ◽  
pp. 924-934 ◽  
Author(s):  
Amin Bemani ◽  
Qingang Xiong ◽  
Alireza Baghban ◽  
Sajjad Habibzadeh ◽  
Amir H. Mohammadi ◽  
...  

Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 392 ◽  
Author(s):  
Shih-Yuan Chen ◽  
Takehisa Mochizuki ◽  
Masayasu Nishi ◽  
Hideyuki Takagi ◽  
Yuji Yoshimura ◽  
...  

The bio-oil was largely produced by thermal pyrolysis of Jatropha-derived biomass wastes (denoted as Jatropha bio-oil) using a pilot plant with a capacity of 20 kg h-1 at Thailand Institute of Scientific and Technological Research (TISTR), Thailand. Jatropha bio-oil is an unconventional type of bio-oil, which is mostly composed of fatty acids, fatty acid methyl esters, fatty acid amides, and derivatives, and consequently, it contains large amounts of heteroatoms (oxygen ~20 wt.%, nitrogen ~ 5 wt.%, sulfur ~ 1000 ppm.). The heteroatoms, especially nitrogen, are highly poisonous to the metal or sulfide catalysts for upgrading of Jatropha bio-oil. To overcome this technical problem, we reported a stepwise strategy for hydrotreating of 100 wt.% Jatropha bio-oil over mesoporous sulfide catalysts (CoMo/γ-Al2O3 and NiMo/γ-Al2O3) to produce drop-in transport fuels, such as gasoline- and diesel-like fuels. This study is very different from our recent work on co-processing of Jatropha bio-oil (ca. 10 wt.%) with petroleum distillates to produce a hydrotreated oil as a diesel-like fuel. Jatropha bio-oil was pre-treated through a slurry-type high-pressure reactor under severe conditions, resulting in a pre-treated Jatropha bio-oil with relatively low amounts of heteroatoms (oxygen < 20 wt.%, nitrogen < 2 wt.%, sulfur < 500 ppm.). The light and middle distillates of pre-hydrotreated Jatropha bio-oil were then separated by distillation at a temperature below 240 °C, and a temperature of 240–360 °C. Deep hydrotreating of light distillates over sulfide CoMo/γ-Al2O3 catalyst was performed on a batch-type high-pressure reactor at 350 °C and 7 MPa of H2 gas for 5 h. The hydrotreated oil was a gasoline-like fuel, which contained 29.5 vol.% of n-paraffins, 14.4 vol.% of iso-paraffins, 4.5 vol.% of olefins, 21.4 vol.% of naphthene compounds and 29.6 wt.% of aromatic compounds, and little amounts of heteroatoms (nearly no oxygen and sulfur, and less than 50 ppm of nitrogen), corresponding to an octane number of 44, and it would be suitable for blending with petro-gasoline. The hydrotreating of middle distillates over sulfide NiMo/γ-Al2O3 catalyst using the same reaction condition produced a hydrotreating oil with diesel-like composition, low amounts of heteroatoms (no oxygen and less than 50 ppm of sulfur and nitrogen), and a cetane number of 60, which would be suitable for use in drop-in diesel fuel.


Fuel ◽  
2012 ◽  
Vol 91 (1) ◽  
pp. 102-111 ◽  
Author(s):  
Luis Felipe Ramírez-Verduzco ◽  
Javier Esteban Rodríguez-Rodríguez ◽  
Alicia del Rayo Jaramillo-Jacob

Author(s):  
Shih-Yuan Chen ◽  
Takehisa Mochizuki ◽  
Masayasu Nishi ◽  
Hideyuki Takagi ◽  
Yuji Yoshimura ◽  
...  

The bio-oil was largely produced by thermal pyrolysis of Jatropha-derived biomass wastes (denoted as Jatropha bio-oil) using a Pilot Plant with a capacity of 20 kg h-1 at Thailand Institute of Scientific and Technological Research (TISTR), Thailand. Jatropha bio-oil is an unconventional type of bio-oil, which is mostly composed of fatty acids, fatty acid methyl esters, fatty acid amides and derivatives, and consequently it contained large amounts of heteroatoms (oxygen ~ 20 wt.%, nitrogen ~ 5 wt.%, sulfur ~ 1000 ppm.). The heteroatoms, nitrogen especially, are highly poisonous to the metal or sulfide catalysts for upgrading of Jatropha bio-oil. To overcome this technical problem, we reported a stepwise strategy for hydrotreating of 100 wt% Jatropha bio-oil over mesoporous sulfide catalysts of CoMo/&gamma;-Al2O3 and NiMo/&gamma;-Al2O3 to produce drop-in transport fuels, such as gasoline- and diesel-like fuels. This study is very different from our recent work on co-processing of Jatropha bio-oil (ca. 10 wt%) with petroleum distillates to produce a hydrotreated oil as a diesel-like fuel (Chen et al., Catalysts 2018, 8, 59; http://dx.doi.org/10.3390/catal8020059). Jatropha bio-oil was pre-treated through a slurry-type high pressure reactor under severe condition, resulting in a pre-treated Jatropha bio-oil with relatively low amounts of heteroatoms (oxygen &lt; 20 wt.%, nitrogen &lt; 2 wt.%, sulfur &lt; 500 ppm.). The light and middle distillates of pre-hydrotreated Jatropha bio oil was then separated by distillation at temperature below 240 oC, and the temperature of 240-360 oC. Deep hydrotreating of light distillates over sulfide CoMo/&gamma;-Al2O3 catalyst was performed on a batch-type high pressure reactor at 350 oC and 7 MPa of H2 gas for 5 h. The hydrotreated oil was a gasoline-like fuel, which contained 29.5 vol.% of n-paraffins, 14.4 vol.% of iso-paraffins, 4.5 vol.% of olefins, 21.4 vol. % of naphthene compounds and 29.6 wt.% of aromatic compounds, and little amounts of heteroatoms (nearly no oxygen and sulfur, and less than 50 ppm of nitrogen), corresponding to an octane number of 44, and it would be suitable for blending with petro-gasoline. The hydrotreating of middle distillates over sulfide NiMo/&gamma;-Al2O3 catalyst using the same reaction condition produced a hydrotreating oil with diesel-like composition, low amounts of heteroatoms (no oxygen and less than 50 ppm of sulfur and nitrogen), and a cetane number of 60, which would be suitable for use in drop-in diesel fuel.


2011 ◽  
Vol 347-353 ◽  
pp. 2651-2655
Author(s):  
Yong Bin Lai ◽  
Yin Nan Yuan ◽  
Xiu Chen

The thermal analysis has been employed to yield information on the biodiesel ignition quality since the ignition quality influences the combustion and exhaust emissions of the fuels in a compression ignition (CI) engine. The chemical compositions of -10 petrodiesel (-10PD), soybean-based biodiesel (SME) and cottonseed-based biodiesel (CME) are analyzed by gas chromatography-mass spectrometry (GC-MS). Ignition temperature of -10PD, SME and CME is determined by thermogravimetry-differential scanning calorimetry (TG-DSC). The study shows that the biodiesel is mainly composed of fatty acid methyl esters: C14:0–C24:0, C16:1–C22:1, C18:2 and C18:3. Biodiesel ignition quality is better than petrodiesel. The ignition temperature of CME and SME is 207.4 and 213.9 °C respectively. The ignition quality of biodiesel is better with shorter carbon chain lengths and more saturated fatty acid methyl ester (SFAME).


2021 ◽  
Author(s):  
Jyotirmoy Kakati ◽  
Tapan K. Gogoi ◽  
Sukhamoy Pal ◽  
Ujjwal K. Saha

Abstract Biodiesel has been accepted as a clean and an eco-friendly green diesel fuel by the entire world. In India, various non-edible oils have been tested for exploring their suitability as a fuel in diesel engines. In the north eastern states of India, many oil bearing seeds such as Koroch (a variety of Pongamia glabra), Nahar (Mesua ferrea), Terminalia (Terminalia belerica Robx), Kutkura (Meyna spinosa Roxb), Amari (Amoora Wallichii King), Yellow oleander (Thevetia peruviana) and others are found in abundance. In this article, the Yellow oleander seed oil (YOSO) has been investigated for biodiesel production and characterization. The oil content in Yellow oleander seed is found to be 63.87%. The free fatty acid (FFA) content in YOSO is measured, and is found to be 32.0%; hence the two-step acid-base catalysis transesterification process has been adopted for producing biodiesel from the YOSO. YOSO contains 5.03% palmitic, 6.92% stearic, 48.14% oleic and 31.37% linoleic acid. The density, calorific value and kinematic viscosity of Yellow oleander fatty acid methyl ester (YO-FAME) are 879.7 kg/m3, 40.159 MJ/kg and 4.63 mm2/s respectively. Most of the fuel properties of YO-FAME meet ASTM D6751 and EN 14214 biodiesel standards. The YO-FAME exhibits a low sulphur content of 13.0 ppm and a high cetane number of 58.3. Fire point and pour point of YO-FAME were found to be 158°C and 5°C respectively. The physio-chemical properties of YO-FAME has been compared with FAME of Yellow oleander, Ratanjot (Jatropha curcus), Terminalia (Terminalia belerica Robx.) and Nahar (Mesua ferrea).


2014 ◽  
Vol 6 (2) ◽  
pp. 213-221
Author(s):  
Ruth Salomon ◽  
Marcela Crevero ◽  
Enrique Rost ◽  
Marisa Carstens ◽  
Ariel Parra ◽  
...  

Microalgae stand as biodiesel feedstock for high productivity and good quality of lipids. This paper presents the fatty acid methyl ester profile of Scenedesmus quadricauda. The culture was grown in Trelew city sewage, Patagonia, Argentina, in 20L at 23±1ºC, 12:12 photoperiod, fluorescent lighting tubes at 33μE m-2s-1 and agitation by air bubbling. Percentage of fatty acid methyl esters was 7,89%, it was determined by Lepage method. The profile was obtained by gas chromatography. Methyl linolenate (C18: 3) and polyunsaturated (≥4 double bonds) ester fractions were 15,06% and 0,83% respectively. The unsaturation index (0,84) was estimated and some biodiesel parameters were calculated through it: kinematic viscosity (4,68mm s -2), iodine value (75,15), cetane number (57,28), cloud point (8,78°C), specific gravity (0,88) and higher heating value (40,01MJ/kg). Linolenic acid ester fraction is above the limit value of EN 14214:2003 (<12%). However, one can modify unsaturation in this strain by varying the temperature. It is also possible to increase the lipid proportion by maintaining the culture at low nitrogen concentration by venting NH3 to increase pH during photosynthesis.


1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.


Sign in / Sign up

Export Citation Format

Share Document