scholarly journals Citizen Science for Traffic Monitoring: Investigating the Potentials for Complementing Traffic Counters with Crowdsourced Data

2022 ◽  
Vol 14 (2) ◽  
pp. 622
Author(s):  
Miha Janež ◽  
Špela Verovšek ◽  
Tadeja Zupančič ◽  
Miha Moškon

Traffic counts are among the most frequently employed data to assess the traffic patterns and key performance indicators of next generation sustainable cities. Automatised counting is often based on conventional traffic monitoring systems such as inductive loop counters (ILCs). These are costly to install, maintain, and support. In this paper, we investigate the possibilities to complement and potentially replace the existing traffic monitoring infrastructure with crowdsourcing solutions. More precisely, we investigate the capabilities to predict the ILC-obtained data using Telraam counters, low-cost camera counters voluntarily employed by citizens and freely accessible by the general public. In this context, we apply different exploratory data analysis approaches and demonstrate a regression procedure with a selected set of regression models. The presented analysis is demonstrated on different urban and highway road segments in Slovenia. Our results show that the data obtained from low-cost and easily accessible counters can be used to replace the existing traffic monitoring infrastructure in different scenarios. These results confirm the prospective to directly apply the citizen engagement in the process of planning and maintaining sustainable future cities.

2021 ◽  
Author(s):  
Saina Abolmaali

Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases including human Coronavirus display patterns. In this study with the benefit of data analytic, we develop regression models and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of models to predict number of cases. first, we implement a good understanding of data and perform Exploratory Data Analysis (EDA). Then, we derive the parameters of the model from the available data corresponding to the top 4 regions based on the history of infections and the most infected people as of the end of August 2020. Then models are compared and further research are introduced.


2021 ◽  
Vol 8 (4) ◽  
pp. 598-613
Author(s):  
Saina Abolmaali ◽  
◽  
Samira Shirzaei ◽  

<abstract> <p>Starting February 2020, COVID-19 was confirmed in 11,946 people worldwide, with a mortality rate of almost 2%. A significant number of epidemic diseases consisting of human Coronavirus display patterns. In this study, with the benefit of data analytic, we develop regression models and a Susceptible-Infected-Recovered (SIR) model for the contagion to compare the performance of models to predict the number of cases. First, we implement a good understanding of data and perform Exploratory Data Analysis (EDA). Then, we derive parameters of the model from the available data corresponding to the top 4 regions based on the history of infections and the most infected people as of the end of August 2020. Then models are compared, and we recommend further research.</p> </abstract>


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Jayesh S

UNSTRUCTURED Covid-19 outbreak was first reported in Wuhan, China. The deadly virus spread not just the disease, but fear around the globe. On January 2020, WHO declared COVID-19 as a Public Health Emergency of International Concern (PHEIC). First case of Covid-19 in India was reported on January 30, 2020. By the time, India was prepared in fighting against the virus. India has taken various measures to tackle the situation. In this paper, an exploratory data analysis of Covid-19 cases in India is carried out. Data namely number of cases, testing done, Case Fatality ratio, Number of deaths, change in visits stringency index and measures taken by the government is used for modelling and visual exploratory data analysis.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1246 ◽  
Author(s):  
Darragh Lydon ◽  
Myra Lydon ◽  
Rolands Kromanis ◽  
Chuan-Zhi Dong ◽  
Necati Catbas ◽  
...  

Increasing extreme climate events, intensifying traffic patterns and long-term underinvestment have led to the escalated deterioration of bridges within our road and rail transport networks. Structural Health Monitoring (SHM) systems provide a means of objectively capturing and quantifying deterioration under operational conditions. Computer vision technology has gained considerable attention in the field of SHM due to its ability to obtain displacement data using non-contact methods at long distances. Additionally, it provides a low cost, rapid instrumentation solution with low interference to the normal operation of structures. However, even in the case of a medium span bridge, the need for many cameras to capture the global response can be cost-prohibitive. This research proposes a roving camera technique to capture a complete derivation of the response of a laboratory model bridge under live loading, in order to identify bridge damage. Displacement is identified as a suitable damage indicator, and two methods are used to assess the magnitude of the change in global displacement under changing boundary conditions in the laboratory bridge model. From this study, it is established that either approach could detect damage in the simulation model, providing an SHM solution that negates the requirement for complex sensor installations.


Sign in / Sign up

Export Citation Format

Share Document