scholarly journals Roadmap to Profitability for a Speed-Controlled Micro-Hydro Storage System Using Pumps as Turbines

2022 ◽  
Vol 14 (2) ◽  
pp. 653
Author(s):  
Florian Julian Lugauer ◽  
Josef Kainz ◽  
Elena Gehlich ◽  
Matthias Gaderer

Storage technologies are an emerging element in the further expansion of renewable energy generation. A decentralized micro-pumped storage power plant can reduce the load on the grid and contribute to the expansion of renewable energies. This paper establishes favorable boundary conditions for the economic operation of a micro-pump storage (MPS) system. The evaluation is performed by means of a custom-built simulation model based on pump and turbine maps which are either given by the manufacturer, calculated according to rules established in studies, or extended using similarity laws. Among other criteria, the technical and economic characteristics regarding micro-pump storage using 11 pumps as turbines controlled by a frequency converter for various generation and load scenarios are evaluated. The economical concept is based on a small company (e.g., a dairy farmer) reducing its electricity consumption from the grid by storing the electricity generated by a photovoltaic system in an MPS using a pump as a turbine. The results show that due to the high specific costs incurred, systems with a nominal output in excess of around 22 kW and with heads beyond approximately 70 m are the most profitable. In the most economical case, a levelized cost of electricity (LCOE) of 29.2 €cents/kWh and total storage efficiency of 42.0% is achieved by optimizing the system for the highest profitability.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1402 ◽  
Author(s):  
Robert Małkowski ◽  
Marcin Jaskólski ◽  
Wojciech Pawlicki

This paper presents research on a hybrid photovoltaic-battery energy storage system, declaring its hourly production levels as a member of a balancing group submitting common scheduling unit to the day-ahead market. It also discusses the variability of photovoltaic system generation and energy storage response. The major research questions were whether the operation of a hybrid photovoltaic-battery energy storage system is viable from the technical and economic viewpoint and how to size battery energy storage for that purpose. The DIgSILENT PowerFactory environment was used to develop the simulation model of postulated hybrid system. Then, tests were conducted on real devices installed in the LINTE^2 laboratory at Gdańsk University of Technology, Poland. Firstly, power generation in the photovoltaic system was modeled using hardware in the loop technique and tested in cooperation with emulated photovoltaic and real battery energy storage system (lithium-ion battery, 25 kWh). Secondly, a real photovoltaic power plant (33 kW) and real battery energy storage were applied. The results obtained from laboratory experiments showed that market operation of hybrid photovoltaic-battery energy storage system is feasible. However, developing a control strategy constitutes a great challenge, as the operator is forced to intervene more frequently than the simulation models indicate in order to keep the parameters of battery storage within accepted ranges, especially in view of a sudden weather breakdown. Levelized cost of electricity from photovoltaic-battery energy storage system varied from 314 to 455 $/MWh, which has proven to be from two to three times higher than the current annual average day-ahead market price in Poland.


2012 ◽  
Vol 462 ◽  
pp. 225-232 ◽  
Author(s):  
Rui Cao ◽  
Zi Long Yang

Today,there is a continuous need for more clean energy, this need has facilitated the increasing of distributed generation technology and renewable energy generation technology. In order to ensure the supply of renewable energy generation continuously and smoothly in distributed power generation system, need to configure a amount of energy storage system for storing excess power generated. This article outlines some energy storage technologies which are used in power systems in the current and future, summarizes the working principles and features of several storage units, provides the basis for the design of energy storage system.


2021 ◽  
Vol 252 ◽  
pp. 02022
Author(s):  
Haoyuan Li ◽  
Guanjun Li ◽  
Bo Yang ◽  
Liantao Ji

Constant speed pumped storage unit is widely used, however it cannot adjust the input power when working in the electric mode, and cannot work in the best efficiency when the head of the reservoir changes greatly. Therefore, it is necessary to study and develop the variable speed pumped storage systems. This paper has studied on variable speed operation of static frequency converter for pumped storage units. Besides, development status of variable speed pumped storage system at home and abroad is investigated. Furthermore, classification and advantages and disadvantages of variable speed pumped storage system are also introduced, mainly including two typical variable speed pumped storage systems, i.e., doubly-fed variable speed system and full power variable speed system.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Kappner ◽  
Peter Letmathe ◽  
Philipp Weidinger

Abstract Background In the context of the German energy transition, the number of domestic households covering part of their electricity consumption from their own photovoltaic system is constantly increasing. Some even use battery storage systems to store excess power for later use, which increases the degree of self-sufficiency and, according to the providers of such systems, should yield financial advantages for the so-called prosumer. Methods We used the Prosumer-Oriented Total Cost of Ownership method to analyse the financial possibilities for prosumers under German market conditions, and thus determined the economically optimal solution for different domestic household sizes. In order to obtain realistic results, we applied real data covering the weather (relevant for the generation of electricity), consumption patterns, investment and operating costs, prices and revenues. If behavioural aspects are set aside and pre-requirements (e.g. sufficient roof space) are met, our model provides guidance for investors and policy-makers alike. Results and conclusions Our research shows that it is financially advantageous for all household sizes to operate the largest photovoltaic system possible for them (up to 10 kWp). By contrast, our results show that the investment in a battery storage system does not pay off even when government subsidies are taken into account. Regardless of the size of the selected battery storage system and all other influencing variables, the financial advantages of such a system do not materialise, although a battery storage system does substantially increase the self-sufficiency rate.


2012 ◽  
Vol 608-609 ◽  
pp. 1120-1126 ◽  
Author(s):  
De Shun Wang ◽  
Bo Yang ◽  
Lian Tao Ji

A static frequency converter start-up control strategy for pumped-storage power unit is presented. And rotor position detecting without position sensor is realized according to voltage and magnetism equations of ideal synchronous motor mathematics model. The mechanism and implementation method of initial rotor position determination and rotor position estimation under low frequency without position sensor are expounded and validated by simulations. Based on the mentioned control strategy, first set of a static frequency converter start-up device in China for large-scale pumped-storage unit is developed, which is applied to start-up control test in the 90 MW generator/motor of Panjiakou Pumped-storage Power Plant. Test results show that rotor position detecting, pulse commutation, natural commutation, and unit synchronous procedure control of static start-up are all proved. The outcomes have been applied in running equipment, which proves the feasibility of mentioned method.


Sign in / Sign up

Export Citation Format

Share Document