scholarly journals Synthesis of Green Deep Eutectic Solvents for Pretreatment Wheat Straw: Enhance the Solubility of Typical Lignocellulose

2022 ◽  
Vol 14 (2) ◽  
pp. 657
Author(s):  
Zedong Teng ◽  
Liyan Wang ◽  
Bingqian Huang ◽  
Yue Yu ◽  
Jianwei Liu ◽  
...  

Deep eutectic solvents (DESs), a novel and environmentally-friendly solvent, have high potential for biomass pretreatment due to its advantages of low cost, low toxicity, strong solubility, excellent selectivity and biocompatibility. Two types of DES (binary and ternary) were synthesized and characterized, and optimized ternary DES was selected to pretreat wheat straw for enhancement of the solubility of lignocellulose. Moreover, enzymatic hydrolysis was tested to verify the performance of pretreatment. In addition, the changes in surface morphology, structure and crystallinity of wheat straw pretreated by DES were analyzed to reveal the pretreatment mechanism. Experimental results indicated that viscosity exhibited little difference in different types of DESs, and a declining trend as the temperature increases in same DES. The ternary DES pretreatment efficiently enhanced the solubility of typical lignocellulose, with the optimal removal rate of lignin at approximately 69.46%. Furthermore, the total sugar concentration of the residue was about 5.1 times more than that of untreated wheat straw after the pretreated samples were hydrolyzed by the cellulase for 24 h, indicating that DES has the unique ability to selectively extract lignin and hemicellulose from wheat straw while retaining cellulose, and thus enhanced the solubility of lignocellulose. The scanning electron microscope (SEM) observation and X-ray diffraction (XRD) determination showed that the surface of wheat straw suffered from serious erosion and the crystallinity index of wheat straw increased after DES5 pretreatment. Therefore, DES cleaves the covalent bond between lignin and cellulose and hemicellulose, and reduces the intractability of lignin resulting in the lignin dissolution. It suggests that DES can be used as a promising and biocompatible pretreatment way for the cost-effective conversion of lignocellulose biomass into biofuels.

2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2013 ◽  
Vol 85 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
MATHIAS A. CHIA ◽  
ANA T. LOMBARDI ◽  
MARIA DA GRACA G. MELAO

The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 896 ◽  
Author(s):  
Qiqi Fan ◽  
Guangping Han ◽  
Wanli Cheng ◽  
Huafeng Tian ◽  
Dong Wang ◽  
...  

In this work, an easy way to prepare the polylactic acid (PLA)/wheat straw fiber (WSF) composite was proposed. The method involved uses either the dopamine-treated WSF or the two-step montmorillonite (MMT)-modified WSF as the filler material. In order to achieve the dispersibility and exfoliation of MMT, it was modified by 12-aminododecanoic acid using a two-step route. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the modified MMT and the coated WSF. As for the properties of PLA/WSF composites, some thermal (using Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis) and mechanical properties (flexural, tensile, and impact) were analyzed. The results showed that the dopamine was successfully coated onto the WSF. Furthermore, Na-MMT was successfully transformed to organo-montmorillonite (OMMT) and formed an exfoliated structure. In addition, a better dispersion of MMT was obtained using the two-step treatment. The interlayer spacing of modified MMT was 4.06 nm, which was 123% higher than that of the unmodified MMT. Additionally, FT-IR analysis suggested that OMMT diffused into the PLA matrix. The thermogravimetric analysis (TGA) showed that a higher thermal stability of PLA/WSF composites was obtained for the modified MMT and dopamine. The results also showed that both the dopamine treated WSF and the two-step-treated MMT exhibited a positive influence on the mechanical properties of PLA/WSF composites, especially on the tensile strength, which increased by 367% compared to the unmodified precursors. This route offers researchers a potential scheme to improve the thermal and mechanical properties of PLA/WSF composites in a low-cost way.


2021 ◽  
Vol 4 (4) ◽  
pp. 377-385
Author(s):  
Volodymyr M. Lucenko ◽  
Dmytro O. Progonov

Reliable protection of confidential data processed in critical information infrastructure elements of public institutions and private organizations is topical task today. Of particular interest are methods to prevent the leakage of confidential data by localizing informative (dangerous) signals that both carry an informative component, and have a signal level higher than predefined threshold. The increase in signal energy from personal computers is caused by increasing of its transistors switching speed. Modern passive shielding methods for secured computers, similar to the well-known program TEMPEST, require either costly and large shielding units or technological simplification by using of low-cost fragmentary shielding of computer’s individual elements. Therefore, localization of side electromagnetic radiation produced by personal computer is needed. The paper presents a cost-effective approach to reducing the level of computer’s electromagnetic radiation by passive method. The radiation are localized and measured by its estimation on personal computer’s elements, namely unshielded communication lines between video processor and a monitor, fragments of electric tracks on motherboards, etc. During experiments authors used ad-hoc miniature electric (ball antenna) and magnetic (Hall sensor) antennas connected to selective voltmeters. This approach significantly reduces the cost of equipment and measurements as well as requirements to analytics’ qualification for improving computer’s protection. Also, the alternative approach for computer protection is proposed. The approach is based on image content protection by distorting the image on the monitor instead of reducing electromagnetic radiation caused by signals from the monitor. The protection includes image scrambling using Arnold transform that randomly “shuffle” the lines in each frame.


2014 ◽  
Vol 6 (1) ◽  
pp. 45-79 ◽  
Author(s):  
Sean Carlin ◽  
Kevin Curran

Indoor radio frequency tracking systems are generally quite expensive and can vary in accuracy due to interference, equipment quality or other environmental factors. Due to these limiting factors of the technology, many businesses today find it hard to justify investing in RFID tracking technologies to improve the safety, efficiency and security of their working environments. The aim of this project was to provide a budget RFID tracking system that was capable of tracking a person or object through an indoor environment. To minimize the cost of the RFID tracking system, the components of the system were built from existing electronic equipment and hardware. The software was also written to minimize licensing and support fees allowing a cost effective budget RFID tracking system to be developed. The tracking system consists of a tag, reader nodes and a PC reader which utilize synapse RF 100 engines with python scripts embedded on to the chips. The tracking system software operates through a web portal utilizing web technologies such as HTML, JavaScript and PHP to allow the tags location to be represented on a two dimensional map using scalable vector graphics. During development of the system a new trilateration algorithm was developed and used convert the signals received from the tag to a virtual position on the map correlating to the actual physical position of the tag. A unique contribution of this system is the low cost of building which we estimate as less than £200 UK sterling for a five node system.


2020 ◽  
pp. 026921552097534
Author(s):  
Nicholas R Latimer ◽  
Arjun Bhadhuri ◽  
Abu O Alshreef ◽  
Rebecca Palmer ◽  
Elizabeth Cross ◽  
...  

Objective: To examine the cost-effectiveness of self-managed computerised word finding therapy as an add-on to usual care for people with aphasia post-stroke. Design: Cost-effectiveness modelling over a life-time period, taking a UK National Health Service (NHS) and personal social service perspective. Setting: Based on the Big CACTUS randomised controlled trial, conducted in 21 UK NHS speech and language therapy departments. Participants: Big CACTUS included 278 people with long-standing aphasia post-stroke. Interventions: Computerised word finding therapy plus usual care; usual care alone; usual care plus attention control. Main measures: Incremental cost-effectiveness ratios (ICER) were calculated, comparing the cost per quality adjusted life year (QALY) gained for each intervention. Credible intervals (CrI) for costs and QALYs, and probabilities of cost-effectiveness, were obtained using probabilistic sensitivity analysis. Subgroup and scenario analyses investigated cost-effectiveness in different subsets of the population, and the sensitivity of results to key model inputs. Results: Adding computerised word finding therapy to usual care had an ICER of £42,686 per QALY gained compared with usual care alone (incremental QALY gain: 0.02 per patient (95% CrI: −0.05 to 0.10); incremental costs: £732.73 per patient (95% CrI: £674.23 to £798.05)). ICERs for subgroups with mild or moderate word finding difficulties were £22,371 and £21,262 per QALY gained respectively. Conclusion: Computerised word finding therapy represents a low cost add-on to usual care, but QALY gains and estimates of cost-effectiveness are uncertain. Computerised therapy is more likely to be cost-effective for people with mild or moderate, as opposed to severe, word finding difficulties.


2020 ◽  
Vol 993 ◽  
pp. 1445-1449
Author(s):  
Shi Jie Liu ◽  
Su Ping Cui ◽  
Hong Xia Guo ◽  
Ya Li Wang ◽  
Nan Li ◽  
...  

Calcium silicate hydrate gel (CSH) was synthesized by calcium acetate and sodium silicate. The structure and morphology of CSH were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy and Scanning electron microscopy. The adsorption performance of CSH was measured by static adsorption method. The results show that CSH has porous structure and large specific surface area, and the optimum reaction conditions is the reaction temperature of 25°C and calcium-silicon ratio of 1.2. It has the maximum adsorption capacity of more than 150 mg/g and the removal rate of more than 86% with Cu2+. And it shows the excellent adsorption performance, even when the concentration of Cu2+ is less than 200mg/L, the removal rate is above 90%. The research may provide a low-cost and high-efficiency adsorbent.


2013 ◽  
Vol 551 ◽  
pp. 217-222 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda ◽  
Kaoru Imaizumi ◽  
Mitsuo Niinomi

This paper is a review of results for Ti-Mn [1], Ti-Mn-Al [2] and Ti-Mn-Fe [3] alloys that have been previously published. Titanium alloys, especially beta-type titanium alloys, have high specific strength, excellent corrosion resistance and good biocompatibility. Unfortunately, applications of titanium alloys are limited by their relatively higher cost. One reason is the use of rare and expensive metallic elements, such as vanadium and molybdenum, as a beta stabilizer. In order to reduce the cost, inexpensive and abundantly available metallic elements should be used as beta stabilizers. Manganese was adopted as a beta stabilizer because it is an abundant metallic element in the Earth’s crust and is relatively low in cost. The heat treatment behavior of Ti-Mn, Ti-Mn-Al and Ti-Mn-Fe alloys was investigated through electrical resistivity and Vickers hardness measurements, X-ray diffraction measurements to identify phase constitution, and observations using a light microscope [1], [2] and [3].


2015 ◽  
Vol 220-221 ◽  
pp. 396-400
Author(s):  
Lauryna Šiaudinytė ◽  
Deividas Sabaitis ◽  
Domantas Bručas ◽  
Gintaras Dmitrijev

Production of high precision circular scales is a complicated process requiring expensive equipment and complex processes to achieve. Precision angle measurement equipment tends to be very expensive and therefore not accessible to all in need. Simplification of production of such devices can lead to reducing costs of angle measurement systems ensuring easier accessibility. A new method of producing precision circular scales using low cost mass production can reduce the costs of these devices drastically. Therefore, utilising a common CD technology as the basis for such scales is analysed. This paper deals with the analysis of the newest laser cutting method for plastic circular scales. Preliminary results of manufacturing such scales are presented in the paper as well as measurements of the grating of the scale were performed. The quality of different scales manufactured using different laser types is analysed in the study. The cost – effective alternative of manufacturing circular scales is discussed in the paper.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


Sign in / Sign up

Export Citation Format

Share Document