scholarly journals Application and Evaluation of a Non-Accident-Based Approach to Road Safety Analysis Based on Infrastructure-Related Human Factors

2022 ◽  
Vol 14 (2) ◽  
pp. 662
Author(s):  
Lorenzo Domenichini ◽  
Andrea Paliotto ◽  
Monica Meocci ◽  
Valentina Branzi

Too often the identification of critical road sites is made by “accident-based” methods that consider the occurred accidents’ number. Nevertheless, such a procedure may encounter some difficulties when an agency does not have reliable and complete crash data at the site level (e.g., accidents contributing factors not clear or approximate accident location) or when crashes are underreported. Furthermore, relying on accident data means waiting for them to occur with the related consequences (possible deaths and injuries). A non-accident-based approach has been proposed by PIARC. This approach involves the application of the Human Factors Evaluation Tool (HFET), which is based on the principles of Human Factors (HF). The HFET can be applied to road segments by on-site inspections and provides a numerical performance measure named Human Factors Scores (HFS). This paper analyses which relationship exists between the results of the standard accident-based methods and those obtainable with HFET, based on the analysis of self-explaining and ergonomic features of the infrastructure. The study carried out for this purpose considered 23 km of two-way two-lane roads in Italy. A good correspondence was obtained, meaning that high risky road segments identified by the HFS correspond to road segments already burdened by a high number of accidents. The results demonstrated that the HFET allows for identifying of road segments requiring safety improvements even if accident data are unavailable. It allows for improving a proactive NSS, avoiding waiting for accidents to occur.

2018 ◽  
Vol 250 ◽  
pp. 02002 ◽  
Author(s):  
Nordiana Mashros ◽  
SittiAsmah Hassan ◽  
Yaacob Haryati ◽  
Mohd Shahrir Amin Ahmad ◽  
Ismail Samat ◽  
...  

Understanding and prioritising crash contributing factors is important for improving traffic safety on the expressway. This paper aims to identify the possible contributory factors that were based on findings obtained from crash data at Senai-Desaru Expressway (SDE), which is the main connector between the western and eastern parts of Johor, Malaysia. Using reported accident data, the mishaps that had occurred along the 77.2 km road were used to identify crash patterns and their possible related segment conditions. The Average Crash Frequency and Equivalent Property Damage Only Average Crash Frequency Methods had been used to identify and rank accident-prone road segments as well as to propose for appropriate simple and inexpensive countermeasures. The results show that the dominant crash type along the road stretches of SDE had consisted of run-off-road collision and property damage only crashes. All types of accidents were more likely to occur during daytime. Out of the 154 segments, the 4 most accident-prone road segments had been determined and analysed. The results obtained from the analyses suggest that accident types are necessary for identifying the possible causes of accidents and the appropriate strategies for countermeasures. Therefore, this accident analysis could be helpful to relevant authorities in reducing the number of road accidents and the level of accident severity along the SDE.


2020 ◽  
Vol 12 (3) ◽  
pp. 925 ◽  
Author(s):  
Borja Alonso ◽  
Vittorio Astarita ◽  
Luigi Dell’Olio ◽  
Vincenzo Pasquale Giofrè ◽  
Giuseppe Guido ◽  
...  

The purpose of this document is to validate a new methodology useful for the estimation of road accidents resulting from possible driver distractions. This was possible through a statistical comparison made between real accident data between 2016 and 2018 in the city of Santander (Spain) and simulated data resulting from the application of the methodology on two areas of study. The methodology allows us to evaluate possible collisions starting from the knowledge of vehicular trajectories extrapolated from microsimulation. Studies show that there are good correlations between the real data and the simulated data. The results obtained show that the proposed methodology can be considered reliable and, therefore, it could be of fundamental importance for designers, since it would simplify the choice between different possible intervention scenarios, determining which is the least risky in terms of road safety.


Author(s):  
Helen Waleczek ◽  
Justin Geistefeldt

On freeways with high traffic demand, hard shoulder running (HSR) can be an effective traffic management measure to increase the capacity by providing an additional travel lane during peak hours. While the positive effects of HSR on traffic flow quality were documented in several studies, the implications of HSR on road safety are more ambiguous. This paper presents results of a study in which accident data for seven freeway sections with HSR on freeways in Germany were analyzed over a long period of 13 years. All investigated sections are equipped with variable speed limits. The evaluation of crash frequencies on the investigated freeway sections revealed a high safety level. By combining crash data and traffic data it is shown that crash occurrence depends on the prevailing traffic conditions, with congestion being the most critical traffic state in relation to safety. Therefore, safety improvements upstream of HSR segments can be related to the improved traffic flow and the reduction of congestion. In conclusion, the results of the investigation provide evidence that the implementation of HSR can improve road safety if state-of-the-art traffic control technology is applied and congestion can be relieved.


Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 45 ◽  
Author(s):  
Frank Otremba ◽  
José Romero Navarrete ◽  
Alejandro Lozano Guzmán

Road safety depends on several factors associated with the vehicle, to the infrastructure, as well as to the environment and experience of vehicle drivers. Concerning the vehicle factors influencing the safety level of an infrastructure, it has been shown that the dynamic interaction between the carried liquid cargo and the vehicle influences the operational safety limits of the vehicle. A combination of vehicle and infrastructure factors converge when a vehicle carrying liquid cargo at a partial fill level performs a braking maneuver along a curved road segment. Such a maneuver involves both longitudinal and lateral load transfers that potentially affect both the braking efficiency and the lateral stability of the vehicle. In this paper, a series of models are set together to simulate the effects of a sloshing cargo on the braking efficiency and load transfer rate of a partially filled road tanker. The model assumes the superposition of the roll and pitch independent responses, while the vehicle is equipped with Anti-lock braking System brakes (ABS) in the four wheels. Results suggest that cargo sloshing can affect the performance of the vehicle on the order of 2% to 9%, as a function of the performance measure considered. A dedicated ABS system could be considered to cope with such diminished performance.


Author(s):  
Denis Elia Monyo ◽  
Henrick J. Haule ◽  
Angela E. Kitali ◽  
Thobias Sando

Older drivers are prone to driving errors that can lead to crashes. The risk of older drivers making errors increases in locations with complex roadway features and higher traffic conflicts. Interchanges are freeway locations with more driving challenges than other basic segments. Because of the growing population of older drivers, it is vital to understand driving errors that can lead to crashes on interchanges. This knowledge can assist in developing countermeasures that will ensure safety for all road users when navigating through interchanges. The goal of this study was to determine driver, environmental, roadway, and traffic characteristics that influence older drivers’ errors resulting in crashes along interchanges. The analysis was based on three years (2016–2018) of crash data from Florida. A two-step approach involving a latent class clustering analysis and the penalized logistic regression was used to investigate factors that influence driving errors made by older drivers on interchanges. This approach accounted for heterogeneity that exists in the crash data and enhanced the identification of contributing factors. The results revealed patterns that are not obvious without a two-step approach, including variables that were not significant in all crashes, but were significant in specific clusters. These factors included driver gender and interchange type. Results also showed that all other factors, including distracted driving, lighting condition, area type, speed limit, time of day, and horizontal alignment, were significant in all crashes and few specific clusters.


1987 ◽  
Vol 18 (4) ◽  
pp. 289-296 ◽  
Author(s):  
M. Sivak
Keyword(s):  

Author(s):  
Ping Yi ◽  
Bin Ran

This research examines a streamlined accident data acquisition, communications, and analysis system to improve the Chinese highway safety program. A data logger compatible with the Global Positioning System and geographic information system is proposed to identify highway accident locations and organize the data into a database format. A data encoding concept is used to transform Chinese characters into numbers, so that the encoded data are easy to integrate into a large data system. A three-tier client–server networking system is set up as the backbone framework for data communications between the central database and distributed local offices. Using local database functions, traffic police at the client level can view crash data through data mapping and attribute listing and analyze the data through nested query and sorting operations. A data graphing and analysis module was tested for automatically constructing a collision diagram on selected data. The proposed approach to crash data acquisition and analysis was found to be feasible and effective and will help to enhance China’s highway safety program after full implementation.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Liang Wang ◽  
Yaohua Wang ◽  
Xiaoqiang Yang ◽  
Kai Cheng ◽  
Haishan Yang ◽  
...  

Reliability studies for coding contributing factors of incident reports in high hazard industries are rarely conducted and reported. Although the Human Factors Analysis and Classification System (HFACS) appears to have a larger number of such studies completed than most other systems doubt exists as the accuracy and comparability of results between studies due to aspects of methodology and reporting. This paper reports on a trial conducted on HFACS to determine its reliability in the context of military air traffic control (ATC). Two groups participated in the trial: one group comprised of specialists in the field of human factors, and the other group comprised air traffic controllers. All participants were given standardized training via a self-paced workbook and then read 14 incident reports and coded the associated findings. The results show similarly low consensus for both groups of participants. Several reasons for the results are proposed associated with the HFACS model, the context within which incident reporting occurs in real organizations and the conduct of the studies.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 40
Author(s):  
Robert Zůvala ◽  
Kateřina Bucsuházy ◽  
Veronika Valentová ◽  
Jindřich Frič

Road accident occurrence is often the result of driving system malfunctions, and road safety improvements need to focus on all basic driving components—the vehicle, road infrastructure, and road users. Only focusing on one type of improvement does not necessarily lead to increased road safety. Instead, improved road safety requires comprehensive measures that consider all factors using in-depth accident analysis. The proposed measures, based on the findings from in-depth data that have general applicability, are necessary to determine whether data gained from in-depth studies adequately represent national statistics. This article aims to verify the representativeness of the Czech In-Depth Accident Study at a national level. The main contribution of this article lies in the use of a weighting method (specifically, a raking procedure) to generalise research results and render them applicable to a whole population. The obtained results could be beneficial at the national level, in the Czech Republic, and also on the supranational level. The applicability of this method on accident data is verified; thus, the method can be applied also in other countries or can be used to verify the applicability of conclusions from the Czech in-depth study also on a European or worldwide level.


Sign in / Sign up

Export Citation Format

Share Document