scholarly journals The Effect of Bacteria on Early Age Strength of CEM I and CEM II Cementitious Composites

2022 ◽  
Vol 14 (2) ◽  
pp. 773
Author(s):  
Tsz Ying Hui ◽  
Lorena Skevi ◽  
Bianca Reeksting ◽  
Susanne Gebhard ◽  
Kevin Paine

Despite being associated with lower carbon emissions, CEM II cementitious materials exhibit reduced early age strength compared to that of CEM I. Several studies have demonstrated early age strength improvements by incorporating bacterial cells in concrete. In this study, live vegetative bacteria and dead bacteria killed in two different ways were used to explore whether changes in strength are related to the bacteria’s viability or their surface morphology. Compressive and flexural strength tests were performed at mortars with and without bacteria for both CEM I and CEM II cement. Their microstructure, porosity and mineralogy were also examined. No net strength gain was recorded for either CEM I or CEM II bacterial mortars compared to non-bacterial controls, although changes in the porosity were reported. It is proposed that two phenomena, one causing strength-reduction and one causing strength-gain, took place in the bacterial specimens, simultaneously. It is suggested that each phenomenon is dependent on the alkalinity of the cement matrix, which differs between CEM I and CEM II mortars at early age. Nevertheless, in neither case could it be recommended that the addition of bacteria is an effective way of increasing the early age strength of mortars.

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1593
Author(s):  
Yunyun Tong ◽  
Abdel-Okash Seibou ◽  
Mengya Li ◽  
Abdelhak Kaci ◽  
Jinjian Ye

This paper reports on the utilization of recycled moso bamboo sawdust (BS) as a substitute in a new bio-based cementitious material. In order to improve the incompatibility between biomass and cement matrix, the study firstly investigated the effect of pretreatment methods on the BS. Cold water, hot water, and alkaline solution were used. The SEM images and mechanical results showed that alkali-treated BS presented a more favorable bonding interface in the cementitious matrix, while both compressive and flexural strength were higher than for the other two treatments. Hence, the alkaline treatment method was adopted for additional studies on the effect of BS content on the microstructural, physical, rheological, and mechanical properties of composite mortar. Cement was replaced by alkali-treated BS at 1%, 3%, 5%, and 7% by mass in the mortar mixture. An increased proportion of BS led to a delayed cement setting and a reduction in workability, but a lighter and more porous structure compared to the conventional mortar. Meanwhile, the mechanical performance of composite decreased with BS content, while the compressive and flexural strength ranged between 14.1 and 37.8 MPa and 2.4 and 4.5 MPa, respectively, but still met the minimum strength requirements of masonry construction. The cement matrix incorporated 3% and 5% BS can be classified as load-bearing lightweight concrete. This result confirms that recycled BS can be a sustainable component to produce a lightweight and structural bio-based cementitious material.


1986 ◽  
Vol 85 ◽  
Author(s):  
U. Schneider ◽  
E. Nagele ◽  
N. Dujardin

ABSTRACTStress corrosion phenomena, i.e. significant effects of mechanical stresses on the corrosion resistance of materials, have been reported for a large variety of materials, including metals, oxides and halides. Recently it has been shown [1,2] that cementitious materials are also sensitive to stress corrosion. The time dependent decrease in the flexural strength of chemically stressed concrete and mortar depends significantly on the mechanical stress acting simultaneously with the chemical attack.For cementitious materials a comprehensive study of the stress corrosion phenomena has been started. In this paper the latest results from the current research program are presented and the interrelations between the microstructure of hardened cement mortar and the strength reduction caused by stress corrosion, are briefly discussed.


2020 ◽  
Author(s):  
Mahyar Ramezani

Recently, Carbon Nanotubes (CNTs) are drawing considerable attention of researchers for reinforcing cementitious materials due to their excellent mechanical properties and high aspect ratio (length-to-diameter ratio). However, CNTs might not disperse well within the cement matrix, resulting in little improvement or even degradation of concrete properties. The uncertainty in producing the consistent results in different studies might be attributed to multiple interactions between the experimental variables affecting the nanotube dispersion and the final properties of CNT-cement nanocomposites. Therefore, this research mainly focused on proposing equations that can reliably capture these interactions in order to correlate CNT dispersion with the mechanical properties. The main experimental variables studied included CNT concentration, aspect ratio, ultrasonication energy, ultrasonication amplitude, surfactant-to-CNTs ratio, water-to-cement ratio, sand-to-cement ratio, and hydration age of specimen. The study reported in this research was conducted in two parts: experimental program and modeling. In the experimental part of this research, a total of 63 different mix proportions were used to evaluate the flowability, mechanical properties, and durability characteristics of cement pastes and mortars containing CNTs. Using experimental test results reported in this study and the literature, three critical relations were proposed to consider the CNT dispersion, cement matrix composition, and hydration age of cement. The proposed critical relations were then added to available theoretical models in the literature. The flexural strength and elastic modulus of CNT-cement nanocomposites were predicted through a state-of-the-art probabilistic model using a Bayesian methodology. Finally, the developed probabilistic models were used to identify the optimum ranges of the experimental variables to maximize the mechanical properties. This was done through computing the conditional probability of not meeting the specified design requirement. The experimental results indicated that addition of CNTs could significantly improve different properties of cementitious materials, if the optimum range of each variable was used. Also, to achieve the desired mechanical properties, various combinations of the experimental variables might be used. The proposed prediction models were shown to capture the interactions between the experimental variables for predicting the mechanical properties within ±15% and ±18% of the experimental test results for flexural strength and elastic modulus, respectively. Based on the findings of this research, contour plots were developed to provide practical guidelines for future engineers to design CNT-cement nanocomposites.


2008 ◽  
Vol 19 (4) ◽  
pp. 348-353 ◽  
Author(s):  
Rafael Leonardo Xediek Consant ◽  
Erica Brenoe Vieira ◽  
Marcelo Ferraz Mesquita ◽  
Wilson Batista Mendes ◽  
João Neudenir Arioli-Filho

This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74ºC for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (?=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.


2018 ◽  
Vol 11 (1) ◽  
pp. 176 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Longhui Wang ◽  
Yafeng Gong

Pervious concretes, as sustainable pavement materials, have great advantages in addressing a number of environmental issues. Fly ash, as the industrial by-product waste, is the most commonly used as cement substitute in concrete. The objective of this paper is to study the effects of waste fly ash on properties of pervious concrete. Fly ash was used to replace cement with equivalent volume method at different levels (3%, 6%, 9%, and 12%). The control pervious concrete and fly ash modified pervious concrete were prepared in the laboratory. The porosity, permeability, compressive strength, flexural strength, and freeze–thaw resistance of all mixtures were tested. The results indicated that the addition of fly ash decreased the early-age (28 d) compressive strength and flexural strength, but the long-term (150 d) compressive strength and flexural strength of fly ash modified pervious concrete were higher than that of the early-age. The adverse effect of fly ash on freeze–thaw resistance of pervious concrete was observed when the fly ash was added. The porosity and permeability of all pervious concrete mixtures changed little with the content of fly ash due to the use of equal volume replacement method. Although fly ash is not positive to the properties of pervious concrete, it is still feasible to apply fly ash as a substitute for cement in pervious concrete.


2020 ◽  
Vol 6 (12) ◽  
pp. 2416-2424
Author(s):  
Erniati Bachtiar ◽  
Mustaan Mustaan ◽  
Faris Jumawan ◽  
Meldawati Artayani ◽  
Tahang Tahang ◽  
...  

This study aims to examine the effect of recycled Polyethylene Terephthalate (PET) artificial aggregate as a substitute for coarse aggregate on the compressive strength and flexural strength, and the volume weight of the concrete. PET plastic waste is recycled by heating to a boiling point of approximately 300°C. There are five variations of concrete mixtures, defined the percentage of PET artificial aggregate to the total coarse aggregate, by 0, 25, 50, 75 and 100%. Tests carried out on fresh concrete mixtures are slump, bleeding, and segregation tests. Compressive and flexural strength tests proceeded based on ASTM 39/C39M-99 and ASTM C293-79 standards at the age of 28 days. The results showed that the use of PET artificial aggregate could improve the workability of the concrete mixture. The effect of PET artificial aggregate as a substitute for coarse aggregate on the compressive and flexural strength of concrete is considered very significant. The higher the percentage of PET plastic artificial aggregate, the lower the compressive and flexural strength, and the volume weight, of the concrete. Substitution of 25, 50, 75 and 100% of PET artificial aggregate gave decreases in compressive strength of 30.06, 32.39, 41.73 and 44.06% of the compressive strength of the standard concrete (18.20 MPa), respectively. The reductions in flexural strength were by respectively 19.03, 54.50, 53.95 and 61.00% of the standard concrete's flexural strength (3.59 MPa). The reductions in volume weight of concrete were by respectively 8.45, 17.71, 25.07 and 34.60% of the weight of the standard concrete volume of 2335.4 kg/m3 Doi: 10.28991/cej-2020-03091626 Full Text: PDF


2019 ◽  
Vol 4 ◽  
pp. 9-15
Author(s):  
Md Shamsuddoha ◽  
Götz Hüsken ◽  
Wolfram Schmidt ◽  
Hans-Carsten Kühne ◽  
Matthias Baeßler

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.


2015 ◽  
Vol 128 (2B) ◽  
pp. B-23-B-26 ◽  
Author(s):  
M. Petrovic ◽  
A. Voloder

Sign in / Sign up

Export Citation Format

Share Document