scholarly journals Mapping Green Infrastructure Based on Multifunctional Ecosystem Services: A Sustainable Planning Framework for Utah’s Wasatch Front

2022 ◽  
Vol 14 (2) ◽  
pp. 825
Author(s):  
Richard leBrasseur

Most sustainable planning frameworks assess natural and social–economic landscape systems as separate entities, and our understanding of the interrelationships between them is incomplete. Landscape classification in urbanizing environments requires an integrated spatial planning approach to better address the United Nation’s sustainable development challenges. The objective of this research is to apply a multicriteria evaluation which ranked diverse ecosystem–service producing landscapes and synthesize the findings within a unique green infrastructure spatial planning framework. Local government stakeholder derived weighting and GIS classification were operated to map both the urban and natural landscapes of the Salt Lake City region of Utah, one of the most rapidly urbanizing areas in North America. Results were assimilated through five regional landscape typologies—Ecological, Hydrological, Recreational, Working Lands, and Community—and indicated those highest ranked landscape areas which provided multiple ecosystem services. These findings support collaborative decision making among diverse stakeholders with overlapping objectives and illustrates pathways to the development of ecosystem service criteria. This paper contributes to a better understanding of how to integrate data and visualize the strategic approaches required for sustainable planning and management, particularly in urban and urbanizing regions where complex socioecological landscapes predominate.

Trees ◽  
2021 ◽  
Author(s):  
H. Pretzsch ◽  
A. Moser-Reischl ◽  
M. A. Rahman ◽  
S. Pauleit ◽  
T. Rötzer

Abstract Key message A model for sustainable planning of urban tree stocks is proposed, incorporating growth, mortality, replacement rates and ecosystem service provision, providing a basis for planning of urban tree stocks. Abstract Many recent studies have improved the knowledge about urban trees, their structures, functions, and ecosystem services. We introduce a concept and model for the sustainable management of urban trees, analogous to the concept of sustainable forestry developed by Carl von Carlowitz and others. The main drivers of the model are species-specific tree diameter growth functions and mortality rates. Based on the initial tree stock and options for the annual replanting, the shift of the distribution of the number of trees per age class can be predicted with progressing time. Structural characteristics such as biomass and leaf area are derived from tree dimensions that can be related to functions such as carbon sequestration or cooling. To demonstrate the potential of the dynamic model, we first show how different initial stocks of trees can be quantitatively assessed by sustainability indicators compared to a target stock. Second, we derive proxy variables for ecosystem services (e.g. biomass for carbon sequestration, leaf area for deposition and shading) from a given distribution of the number of trees per age class. Third, we show by scenario analyses how selected ecosystem services and functions may be improved by combining complementary tree species. We exercise one aspect (cooling) of one ecosystem service (temperature mitigation) as an example. The approach integrates mosaic pieces of knowledge about urban trees, their structures, functions, and resulting ecosystem services. The presented model makes this knowledge available for a sustainable management of urban tree stocks. We discuss the potential and relevance of the developed concept and model for ecologically and economically sustainable planning and management, in view of progressing urbanization and environmental changes.


2020 ◽  
Author(s):  
Xie Hu ◽  
Xue Liang ◽  
Roland Bürgmann ◽  
Yuning Fu ◽  
Teng Wang

One Ecosystem ◽  
2018 ◽  
Vol 3 ◽  
pp. e24490 ◽  
Author(s):  
Mario V Balzan ◽  
Iain Debono

Recreation is an important cultural ecosystem service and is one way in which communities experience the direct and indirect benefits arising from the experiential use of their environment. The recent rise in popularity of Global Positioning System (GPS) game applications, which combine information technology with an activity that increases mobility and encourages outdoor enjoyment, provides ecosystem service practitioners with an opportunity to make use of this georeferenced data to assess recreational ecosystem services. Geocaching is one such worldwide outdoor game. It has fixed points of incursion where people can hide and look for caches. This study explores the possibility of using geocaching data as a proxy for recreational ecosystems services in the Maltese Islands. A quantitative analysis of the georeferenced caches was used together with their visit rates and number of favourite points. This was supplemented by two questionnaires that investigated the preferences and experiences of both geocache placers (n=39) and hunters (n=21). Results show that the highest number of caches were placed and searched for in urban areas and that geocaching is strongly associated with the presence and accessibility of urban green infrastructure. The number of geocachers who stated preference for experiences in nature did not translate into high visit rates to sites of high conservation value (protected areas) but landscape value was significantly associated with recreational ecosystem services flow. The results presented here provide evidence that geocaching spatial data can act as an indicator for assessing and mapping recreational ecosystem services in urban environments and in cultural landscapes.


2018 ◽  
Vol 3 (2) ◽  
pp. 11
Author(s):  
Robby Irsan ◽  
Luthfi Muta'ali ◽  
S Sudrajat

Entikong Region is located in Sanggau Regency, West Kalimantan Province, Indonesia, which is directly adjacent to Malaysia. Land use in the Border Area, which is massive and irregular, results in environmental degradation, deculturization, and lack of living standards of the community. High population growth in the border areas leads to excessive use of natural resources, and used land is not appropriately allocated. The land has limited function, and if the demand for the land is greater than the carrying capacity, there will be an imbalance that results in land degradation and its environment. The purpose of this study is to identify the type and extent of land function switch, analyze provider services as part of the Land Support Capacity Ecosystem services, and identify the Accuracy of Image Interpretation. The results showed that the increasing area of massive land use comes from a mixed plantation in 2017 increased by 60.6% of the total area of Entikong District. Degradation occurs in primary forest land use component which is only 18.6% of Entikong's total area in 2017. This indicates that the use of mixed plantation land acquires the protected forest, with many palm, rubber, and pepper. Similarly, the percentage of accuracy test from the interpretation result reaches 83.33% from 42 sample points in accordance with the real conditions. The Value of Clean Water Ecosystem Service Providers in 2011 was 0.36 and was 0.33 in 2017. Then within the period of almost 7 years, it is decreased by 0.03. Thus, the Ecosystem Service Index of clean water providers has a value less than 1, it means the function of the area as a provider of clean water is very small. Similarly, the Provider Ecosystem Services Index for Foodstuffs, the Value of Food Ecosystem Services Index in 2011 was 0.32 and was 0.31 in 2017, then within the nearly 7-year period, it is decreased by 0.01. The ecosystem services index as a food supply provider for the Entikong border area is very low (less than 1) which means the carrying capacity of the environment is not good enough for supplying food needs in Entikong. This indicates that there is a reduction in the availability of environmental services, and if it continues, then Environmental Assets declines sharply and services derived from nature will be lost or will be expensive in the near future. Thus, optimization and revitalization of land use are necessary by applying various policies related to development in the border area in Entikong District. Keywords: Borders, Land Use, Ecosystem Provider Services.   References Admadhani, D. N., Hajil, A. H. S., & Susanawati, L. D. (2013). Analysis of Water Supply and Water Demand for Carrying Capacity Assessment ( Case Study of Malang ). Journal of Natural Resources and Environment. Asdak, C., & Salim, H. (2006). Water Resource Capacity As a Spatial Planning Consideration. Journal of Environmental Engineering P3TL-BPPT. Ernan Rustiadi, Sunsus Saefulhakim, D. R. P. (2011). Planning and Regional Development. Restpent Press. Ghozali. (2013). Referral of Land Use Utilization Through Ecological Footprint in Gresik Regency. Territory and Environment, 1 No.1, 67–78. Hamidy, Z. (2003). Land Cover Change, Composition, and Life Type in Suakaidupan Cikepuh. Faculty of Forestry, IPB. Muta’ali, L. (2015). Regional Analysis Techniques For Regional Planning, Spatial Planning, and Environment (Februari). Yogyakarta: Faculty of Geography UGM. National Standardization Department. (2010). Classification of Land Cover. Purwadhi. (2008). Introduction Remote Sensing Imagery Interpretation. Semarang: LAPAN. Riqqi, A. (2014). Design Concept Techniques Determination of Supporting Capacity and Capacity of the National Environment and Islands / Islands And Provinces. Bali: KLH. Saripin, I. (2003). Identify Land Use Using Landsat TM Imagery. Agricultural Engineering Bulletin. Varika. (2015). Monitoring of Ecosystem Service-Based Ecotourism (Recreation and Ecotourism) Capacity in 2000 and 2015 Using Landsat Image in Badung Regency, Bali. Viska. (2012). Land Use Direction in Batu City Based on Ecological Ecosystem Approach. Pomits Technique, 1 No.1, 1–6.    


2020 ◽  
Vol 12 (13) ◽  
pp. 5287 ◽  
Author(s):  
Lorena Peña ◽  
Beatriz Fernández de Manuel ◽  
Leire Méndez-Fernández ◽  
María Viota ◽  
Ibone Ametzaga-Arregi ◽  
...  

Sustainable development has to be based on scientific knowledge, social agreements, and political decisions. This study aimed to analyse the implementation of the ecosystem services approach (ESA) in the spatial planning of the Basque Country, via the co-creation of knowledge. This paper uses a proposal for a regional green infrastructure (GI) to examine the co-creation of knowledge process. It addresses the community of practice; a process of co-creation of knowledge through workshops and meeting, SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis using an online survey, and mapping and identification of the multifunctional areas that provide ecosystem services (ES) to develop a GI. Results indicate that ESA has been included in spatial planning actions at different scales (biosphere reserve, metropolitan area, and region). This subsequently created an avenue for understanding the political necessities at play, so that scientists can develop useful tools for sustainable development. The findings also draw attention to the importance of establishing a constructive and mutually comprehensible dialogue between politicians, technical experts and scientists. For ES to be part of spatial planning, ESA has to be taken into account at the beginning of the planning process. We conclude that building bridges between science and spatial planning can help establish science-based management guidelines and tools that help enhance the sustainability of the territory.


2018 ◽  
Vol 47 (4) ◽  
pp. 678-694 ◽  
Author(s):  
Daniela Perrotti ◽  
Sven Stremke

Urban metabolism studies have gained momentum in recent years as a means to assess the environmental performance of cities and to point to more resource-efficient strategies for urban development. Recent literature reviews report a growing number of applications of the industrial ecology model for material flow analysis in the design of the built environment. However, applications of material flow analysis in green infrastructure development are scarce. In this article, we argue that: (i) the use of material flow analysis in green infrastructure practice can inform decision-making towards more resource-efficient urban planning; (ii) the ecosystem service concept is critical to operationalize material flow analysis for green infrastructure planning and design, and, through this, can enhance the impact of urban metabolism research on policy making and planning practice. The article draws from a systematic review of literature on urban ecosystem services and benefits provided by green infrastructure in urban regions. The review focuses on ecosystem services that can contribute to a more energy-efficient and less carbon-intensive urban metabolism. Using the Common International Classification of Ecosystem Services as a baseline, we then discuss opportunities for integrating energy provision and climate regulation ecosystem services in material flow analysis. Our discussion demonstrates that the accounting of ecosystem services in material flow analysis enables expressing impacts of green infrastructure on the urban energy mix (renewable energy provision), the magnitude of energy use (mitigation of building energy demand) and the dynamics of biogeochemical processes in cities (carbon sequestration). We finally propose an expanded model for material flow analysis that illustrates a way forward to integrate the ecosystem service concept in urban metabolism models and to enable their application in green infrastructure planning and design.


2018 ◽  
Vol 33 (12) ◽  
pp. 2047-2059 ◽  
Author(s):  
Javier Babí Almenar ◽  
Benedetto Rugani ◽  
Davide Geneletti ◽  
Tim Brewer

Sign in / Sign up

Export Citation Format

Share Document