scholarly journals Assessment of Soil Physical Quality and Water Flow Regulation under Straw Removal Management in Sugarcane Production Fields

2022 ◽  
Vol 14 (2) ◽  
pp. 841
Author(s):  
Martha Lustosa Carvalho ◽  
Felipe Bonini da Luz ◽  
Renato Paiva de Lima ◽  
Karina Maria Vieira Cavalieri-Polizeli ◽  
João Luís Nunes Carvalho ◽  
...  

Removing sugarcane straw to increase bioenergy production can generate significant income to the industry. However, straw contributes to the regulation of soil functions and consequently supports the provision of ecosystem services, such as water flow regulation. Thus, straw removal may hinder the provision of these services, especially in mechanized sugarcane production systems, which have soil compaction problems due to machinery traffic. In this study, we assess a six-year experiment in Brazil with four rates of straw removal: 0 Mg ha−1 (TR), 5 Mg ha−1 (HR), 10 Mg ha−1 (LR), and 15 Mg ha−1 (NR) remaining straw. Using attributes, such as soil bulk density, porosity, water infiltration, runoff, saturated hydraulic conductivity and available water-holding capacity, as indicators of key soil functions, we calculated a soil-related ecosystem service (ES) index for water flow regulation provision. The ES index revealed that water flow regulation was low regardless of the straw management (0.56, 0.63, 0.64 and 0.60 for TR, HR, LR and NR, respectively). It can be a consequence of soil compaction caused by machinery traffic throughout the successive cycle, whose straw was unable to mitigate this issue. Thus, by the end of the sugarcane cycle (sixth ratoon), straw removal had little effect on soil physical and hydraulic indicators, and consequently had little impact on the provision of the soil-related ES associated with water flow regulation. Nevertheless, straw management should be planned to consider other functions and soil-related ES benefited by straw retention.

Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.


2016 ◽  
Vol 24 (7) ◽  
pp. 1905-1918 ◽  
Author(s):  
Simon D. Carrière ◽  
Konstantinos Chalikakis ◽  
Charles Danquigny ◽  
Hendrik Davi ◽  
Naomi Mazzilli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document