scholarly journals Determining the Optimal Density of Phoebe bournei Plantations Based on Dynamic Programming under Close-to-Nature Management Measures

2022 ◽  
Vol 14 (2) ◽  
pp. 847
Author(s):  
Danmei Wang ◽  
Jiping Li ◽  
Tao Tang

Close-to-nature management (CTNM) is the most promising option for plantation silviculture and has received widespread attention in recent years. Stand density is a key variable in CTNM, as it directly influences growth and yield. Research for the optimal density that maximizes the total harvest has been ongoing. In this paper, a dynamic programming model was applied to the CTNM of Phoebe bournei plantations for the first time to solve the problem of stand density and target tree density control. This paper took Phoebe bournei plantations in Jindong Forest Farm of Hunan Province as the research object. Based on the data of seven consecutive years from 2015 to 2021, Richard’s growth equation was used to fit the height growth equation and basal area growth equation of Phoebe bournei. Stand growth was divided into five development stages according to the forest growth process and characteristics. Stand density and basal area were selected as two-dimensional state variables, and the maximum total harvest in the entire stand growth process was used as the objective function to establish a dynamic programming model. The optimal stand density and target tree density at each growth stage of the stand under three different site conditions were determined. According to the results obtained, the objective forest shape was designed for the stand under three types of site conditions, which can provide a theoretical basis for the CTNM of Phoebe bournei plantations to make the stand achieve the maximum harvest.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
YiHua Zhong ◽  
ShiMing Luo ◽  
Min Bao ◽  
XiaoDie Lv

When designing the underground logistics system, it is necessary to consider the uncertainty of logistics nodes, high cost, and high risk. This paper employed the theories of uncertain graph and dynamic programming to solve the network planning problem of underground logistics system. Firstly, we proposed the concepts of uncertainty measure matrix and vertices structure uncertainty graph by using uncertainty measure and uncertainty graph. Secondly, vertices structure uncertainty graph of the underground logistics system was constructed based on our proposed vertices structure uncertainty graph and the uncertainty of logistics nodes. Thirdly, the dynamic programming model of the underground logistics system was established, and its solution algorithm was also designed by improving simulated annealing. Finally, the correctness and feasibility of the method was validated by using a numerical example of the underground logistics system in Xianlin district, Nanjing City in China.


Sign in / Sign up

Export Citation Format

Share Document