scholarly journals Enhancing Doubly Fed Induction Generator Low-Voltage Ride-Through Capability Using Dynamic Voltage Restorer with Adaptive Noise Cancellation Technique

2022 ◽  
Vol 14 (2) ◽  
pp. 859
Author(s):  
Mohamed Adel Ahmed ◽  
Tarek Kandil ◽  
Emad M. Ahmed

Some of the major challenges facing micro-grids (MGs) during their connection with the utility grid are maintaining power system stability and reliability. One term that is frequently discussed in literature is the low-voltage ride-through (LVRT) capability, as it is required by the utility grid to maintain its proper operation and system stability. Furthermore, due to their inherent advantages, doubly fed induction generators (DFIGs) have been widely installed on many wind farms. However, grid voltage dips and distortion have a negative impact on the operation of the DFIG. A dynamic voltage restorer (DVR) is a commonly used device that can enhance the LVRT capability of DFIG compared to shunt capacitors and static synchronous compensator (STATCOM). DVR implements a series compensation during fault conditions by injecting the proper voltage at the point of common coupling (PCC) in order to preserve stable terminal voltage. In this paper, we propose a DVR control method based on the adaptive noise cancelation (ANC) technique to compensate for both voltage variation and harmonic mitigation at DFIG terminals. Additionally, we propose an online control of the DC side voltage of the DVR using pulse width modulation (PWM) rectifier to reduce both the size of the storage element and the solid-state switches of the DVR, aiming to reduce its overall cost. A thorough analysis of the operation and response of the proposed DVR is performed using MATLAB/SIMULINK under different operating conditions of the grid. The simulation results verify the superiority and robustness of the proposed technique to enhance the LVRT capability of the DFIG during system transients and faults.

Doubly Fed Induction Generator (DFIG) based wind Energy System are very sensitive to grid disturbance such as Symmetrical voltage sag. In this paper the authors propose a new method for application of Dynamic Voltage Restorer for enhancing the low voltage ride through capability of wind turbine driven Doubly Fed Induction Generator.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1794
Author(s):  
Luis Ramon Merchan-Villalba ◽  
Jose Merced Lozano-Garcia ◽  
Juan Gabriel Avina-Cervantes ◽  
Hector Javier Estrada-Garcia ◽  
Alejandro Pizano-Martinez ◽  
...  

This paper presents the design of a decoupled linear control strategy for a Dynamic Voltage Restorer (DVR) that utilizes a Matrix Converter (MC) as its core element and obtains the compensation energy directly from the power system. This DVR is intended to cope with power quality problems present in supply system voltages such as balanced and unbalanced variations (sags and swells), and harmonic distortion. The dynamic model of the complete system that includes the Matrix Converter, the input filters and the electrical grid, is performed in the synchronous reference frame (dq0), to have constant signals at the fundamental frequency, in order to design the proposed linear control strategy. The coupling in the dq components of the system output signals caused by the Park Transformation, is eliminated by a change of variable proposed for the controller design, giving rise to a decoupled linear control. In this way, the strategy developed makes it possible to establish an adequate transient response for the converter in terms of convergence speed and overshoot magnitude, in addition to ensuring closed-loop system stability under bounded operating conditions. Unlike other proposals that utilize complex modulation strategies to control the MC under adverse conditions at the input terminals, in this case, the ability to generate fully controllable output voltages, regardless of the condition of the input signals, is provided by the designed linear controller. This allows the development of a multifunctional compensator with a simple control that could be of easy implementation. In order to verify the performance of the control strategy developed, and the effectiveness of the proposed DVR to mitigate the power quality problems already mentioned, several case studies are presented. The operational capacity of the MC is demonstrated by the obtained simulation results, which clearly reveals the capability of the DVR to eliminate voltage swells up to 50% and sags less than 50%. The compensation limit reached for sags is 37%. In relation to compensation for unbalanced voltage variations, the DVR manages to reduce the voltage imbalance from 11.11% to 0.37%. Finally, with regard to the operation of the DVR as an active voltage filter, the compensator is capable of reducing a THD of 20% calculated on the supply voltage, to a value of 1.53% measured at the load terminals. In the last two cases, the DVR mitigates disturbances to a level below the criteria established in the IEEE standard for power quality. Results obtained from numerical simulations performed in MATLAB/Simulink serve to validate the proposal, given that for each condition analyzed, the MC had succesfully generated the adequate compensation voltages, thus corroborating the robustness and effectiveness of the control strategy developed in this proposal.


2014 ◽  
Vol 607 ◽  
pp. 531-535
Author(s):  
Chen Jian ◽  
Ren Yong Feng ◽  
Hu Hong Bin

with the increasing proportion of wind power in whole power system ,the influence between wind power system and grid become more and more seriously ,so it is great important to research how to keep the connection between the wind power system and grid when grid voltage drops .The paper presents a new method to realize the low voltage ride - through (LVRT) of DFIG by using dynamic voltage restorer (DVR). Once the grid voltage drops,DVR will be put into use and produce compensation voltage to keep the stator side voltage steady .And it also can stop operation after the fault resolution.The paper builds a simulation model of DFIG and gives simulation results on PSCAD/EMTDC platform .


2021 ◽  
Vol 229 ◽  
pp. 01016
Author(s):  
El Mahfoud Boulaoutaq ◽  
Youssef Baala ◽  
Sana Mouslime ◽  
Mhand Oubella ◽  
Mustapha Kourchi ◽  
...  

For grid-connected DFIG-based wind turbine, Fault Ride Through (FRT) or Low Voltage Ride Through (LVRT) capability is vital problem that need to be improved. This paper proposes an Active Disturbance Rejection Control (ADRC) strategy applied to Doubly Fed Induction Generator (DFIG) based Wind turbine (WT), which integrates a Dynamic Voltage Restorer (DVR). The DVR connect in series the DFIG output terminal and the utility grid. The ADRC scheme of the new topology DFIG-based WT with integrated DVR is designed to compensate grid voltage disturbances, which in turn meet LVRT requirement and increase the level of wind power penetration. The performance of this WT-DFIG-DVR structure is investigated in different operating scenarios in order to show the skills of the designed controllers.


Sign in / Sign up

Export Citation Format

Share Document