scholarly journals System Optimization of Shared Mobility in Suburban Contexts

2022 ◽  
Vol 14 (2) ◽  
pp. 876
Author(s):  
Roxana Gandomani ◽  
Moataz Mohamed ◽  
Amir Amiri ◽  
Saiedeh Razavi

Shared mobility is a viable choice to improve the connectivity of lower-density neighbourhoods or suburbs that lack high-frequency public transportation services. In addition, its integration with new forms of powertrain and autonomous technologies can achieve more sustainable and efficient transportation. This study compares four shared-mobility technologies in suburban areas: the Internal Combustion Engine, Battery Electric, and two Autonomous Electric Vehicle scenarios, for various passenger capacities ranging from three to fifteen. The study aims to provide policymakers, transportation planners, and transit providers with insights into the potential costs and benefits as well as system configurations of shared mobility in a suburban context. A vehicle routing problem with time windows was applied using the J-Horizon software to optimize the costs of serving existing intra-community demand. The results indicate a similar fleet composition for Battery Electric and Autonomous Electric fleets. Furthermore, the resulting fleet for all four technologies is dominated by larger vehicle capacities. Due to the large share of driver cost in the total cost, the savings using a fleet of Autonomous Electric Vehicles are predicted to be 68% and 70%, respectively, compared to Internal Combustion and Battery Electric fleets.

2020 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Juan Pablo Futalef ◽  
Diego Muñoz-Carpintero ◽  
Heraldo Rozas ◽  
Marcos Orchard

As CO2 emission regulations increase, fleet owners increasingly consider the adoption of Electric Vehicle (EV) fleets in their business. The conventional Vehicle Routing Problem (VRP) aims to find a set of routes to reduce operational costs. However, route planning of EVs poses different challenges than that of Internal Combustion Engine Vehicles (ICEV). The Electric Vehicle Routing Problem (E-VRP) must take into consideration EV limitations such as short driving range, high charging time, poor charging infrastructure, and battery degradation. In this work, the E-VRP is formulated as a Prognostic Decision-Making problem. It considers customer time windows, partial midtour recharging operations, non-linear charging functions, and limited Charge Station (CS) capacities. Besides, battery State of Health (SOH) policies are included in the E-VRP to prevent early degradation of EV batteries. An optimization problem is formulated with the above considerations, when each EV has a set of costumers assigned, which is solved by a Genetic Algorithm (GA) approach. This GA has been suitably designed to decide the order of customers to visit, when and how much to recharge, and when to begin the operation. A simulation study is conducted to test GA performance with fleets and networks of different sizes. Results show that E-VRP effectively enables operation of the fleet, satisfying all operational constraints.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 285
Author(s):  
Tomislav Erdelić ◽  
Tonči Carić

With the rise of the electric vehicle market share, many logistic companies have started to use electric vehicles for goods delivery. Compared to the vehicles with an internal combustion engine, electric vehicles are considered as a cleaner mode of transport that can reduce greenhouse gas emissions. As electric vehicles have a shorter driving range and have to visit charging stations to replenish their energy, the efficient routing plan is harder to achieve. In this paper, the Electric Vehicle Routing Problem with Time Windows (EVRPTW), which deals with the routing of electric vehicles for the purpose of goods delivery, is observed. Two recharge policies are considered: full recharge and partial recharge. To solve the problem, an Adaptive Large Neighborhood Search (ALNS) metaheuristic based on the ruin-recreate strategy is coupled with a new initial solution heuristic, local search, route removal, and exact procedure for optimal charging station placement. The procedure for the O(1) evaluation in EVRPTW with partial and full recharge strategies is presented. The ALNS was able to find 38 new best solutions on benchmark EVRPTW instances. The results also indicate the benefits and drawbacks of using a partial recharge strategy compared to the full recharge strategy.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document