scholarly journals GGE Biplot Analysis to Explore the Adaption Potential of Italian Common Wheat Genotypes

2022 ◽  
Vol 14 (2) ◽  
pp. 897
Author(s):  
Sara Bosi ◽  
Lorenzo Negri ◽  
Antonio Fakaros ◽  
Giulia Oliveti ◽  
Anne Whittaker ◽  
...  

Given the substantial variation in global wheat yield, insufficient research in cultivar selection for climate change, and the lack of suitable germplasm in sustainable agroecosystems, there is a requisite for soft wheat genotypes, with stable grain yield as well as quality parameters. The present study was aimed at genotype evaluation (GGE biplot for “mean performance versus stability”) not only for yield, but also for technological, phytosanitary and functional quality parameters of 24 Triticum aestivum L. genotypes (eight landraces, old and modern varieties, respectively) within a single organic farm location (Argelato, Emilia-Romagna, Italy) over three consecutive years. Overall, high yield stability was shown for the landraces and old varieties. In particular, the landraces Piave and Gamba di Ferro, as well as the old variety Verna, showed high stability with above-average means for numerous quality parameters of interest. Additionally, relative stability combined with above-average mean for quality parameters was also demonstrated for the high-yielding Gentil Bianco and Guà 113. Aside from Verna, these “unrecognized” resilient genotypes were also shown to meet the requisites for suitable germplasm in sustainable agroecosystems. Future potential utilization of these more stable landraces in addressing climate change would also ultimately facilitate the survival of valuable genetic resources.

2013 ◽  
pp. 95-100
Author(s):  
Éva Szabó

We have investigated the effect of the cropyear, the genotype, the nutrient supply and their interactions on the yield and the quality parameters of three different winter wheat genotypes in three different cropyears. The most disadvantageous influence on the yield averages was caused by the moist weather of 2010, when yield results fell behind the mean of the two other examined years and the nutrient optimum was around low doses. The optimal cropyear turned out to be the ordinary 2011, the best yield results were experienced during this cropyear. Although the drier periods in 2012 decreased the yield values, the varieties could realize high yield maximum values. Considering the yield results, Genius turned out to be the best variety. In respect of the quality traits, 2010 turned out to be the best cropyear in case of all the three varieties. Despite the dry weather of the spring of 2012, the precipitation fell during flowering and ripening phases had positive impact on the grain-filling processes and contributed to the development of better quality. As a consequence of the significantly lower amount of precipitation during the generative phenological phases, the worst quality parameters were realized by the varieties in 2011.   In respect of crop year effect, 2010 was unfavourable for the amount of yield, but the most beneficial for the quality. 2011 was the most advantageous for the yield amounts but disadvantageous for the quality parameters. Although in 2012 extreme crop year effects were experienced after each other (dry and warm spring, moist and warm summer), the yield average and quality trait values were close to the yield averages of 2011 and quality parameters of 2010. Analyzing our results we can state that the average crop year was favourable rather for the yield. The appropriate amount of precipitation during the whole 2010 and that during the generative phenophases in 2012 favoured the development of good quality. Consequently, the appropriate amount of precipitation is essential for the development of good quality during the grain-filling period. The negative crop year effects were only compensated but not eliminated by the good nutrient supply. Genius achieved excellent yield averages but performed worse quality parameters than Mv Toldi, whose quality parameters were outstanding but the yield averages fell slightly behind those of Genius. Considering the yield results, the variety Genius turned out to be the best, while Mv Toldi was the best in quality.


2019 ◽  
pp. 158-161 ◽  
Author(s):  
Batiseba Tembo

Wheat (Triticum aestivum L.) is an important food crop in Zambia. It is the second most widely grown cereal crop after maize. However, its production and productivity during summer rain season is limited by socio-economic, abiotic and biotic constraints. The socio-economic factors limiting high wheat yield are high cost of inputs, lack of improved rain-fed wheat seed, lack of affordable loans, lack of access to market information and poor mechanization. The abiotic constraints on the other hand include drought, high temperature and aluminium toxicity. Biotic constraints affecting rain-fed wheat production include various weeds, pests (aphids, grass hoppers, pink stalk borers and termites) and diseases (powderly mildew, loose smut, leaf rust, fusarium head blight and spot blotch). Termites being the most serious and destructive pest of rain-fed wheat. Spot blotch is the most devastating and widely distributed among the diseases causing high yield losses of between 7-100% followed by fusarium head blight. This review paper, looks at the factors that limit the production and productivity of rain-fed wheat among small holder farmers in Zambia.


2002 ◽  
Vol 82 (2) ◽  
pp. 421-423
Author(s):  
H. G. Nass ◽  
G. A. Atlin ◽  
C. A. Caldwell ◽  
D. F. Walker

AC Grandview, a hard red winter wheat (Triticum aestivum L.), is adapted to the Maritimes. It has shown high yield, good winter survival and moderate to good resistance to powdery mildew, septoria leaf and glume blotch and snow mold. Key words: Triticum aestivum, red winter wheat, yield, cultivar description


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1804
Author(s):  
Vera Popović ◽  
Nataša Ljubičić ◽  
Marko Kostić ◽  
Mirjana Radulović ◽  
Dragana Blagojević ◽  
...  

Different seed priming treatments are widely used in order to improve the nutritional status of wheat, as well as to improve its grain yield and yield- related traits. The present study aimed to evaluate the impact of seed priming with zinc oxide nanoparticles (ZnO NPs) on the yield related traits, such as, field emergence, plant height, spike length and grain yield per plant of four winter wheat genotypes (Triticum aestivum L.) during two vegetation seasons of 2018/2019 and 2019/2020. The seeds of each wheat genotypes were primed with different concentrations of ZnO NPs (0 mg L−1, 10 mg L−1, 100 mg L−1 and 1000 mg L−1) for 48 h in a dark box by continuous aeration and were sown in soil pots with 60–70% moisture content until full maturity. The additive main effects and multiplicative interaction (AMMI) models were used to study the genotype environment effects. The results indicated that the plants response to ZnO nanoparticles significantly increased all of the observed traits of the wheat, while its maximum rates reduced the traits of the wheat. The AMMI analysis revealed the very complex nature of the variation observed in the trial and showed the significant effect of the G×E interaction, in which the first main component was significant for all components.


2018 ◽  
Vol 3 (1) ◽  
pp. 404-413 ◽  
Author(s):  
Akbar Hossain ◽  
M. Farhad ◽  
M.A.H.S. Jahan ◽  
M. Golam Mahboob ◽  
Jagadish Timsina ◽  
...  

Abstract It is important to identify and develop stable wheat varieties that can grow under heat stress. This important issue was addressed in Bangladesh using six wheat genotypes, including three existing elite cultivars (‘BARI Gom 26’, ‘BARI Gom 27’, ‘BARI Gom 28’) and three advanced lines (‘BAW 1130’, ‘BAW 1138’, ‘BAW 1140’). Six sowing dates, namely early sowing (ES) (10 November), optimum sowing (OS) (20 November), slightly late sowing (SLS) (30 November), late sowing (LS) (10 December), very late sowing (VLS) (20 December) and extremely late sowing (ELS) (30 December) were assessed over two years in four locations, representative of the diversity in Bangladesh’s agro-ecological zones. In a split plot design, sowing dates were allocated as main plots and genotypes as subplots. A GGE biplot analysis was applied to identify heat tolerance and to select and recommend genotypes for cultivation in heat-prone zones. All tested genotypes gave greatest grain yield (GY) after OS, followed by SLS, ES and LS, while VLS and ELS gave smallest GY. When GY and the correlations between GY and stress tolerance indices were considered, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom26’ performed best under heat stress, regardless of location or sowing date. In contrast, ‘BARI Gom 27’ and ‘BAW 1130’ were susceptible to heat stress in all locations in both years. Ranking of genotypes and environments using GGE biplot analysis for yield stability showed ‘BAW1140’ to be most stable, followed by ‘BARI Gom 28’ and ‘BARI Gom 26’. Wheat sown on November 20 resulted in highest GY but that sown on December 30 resulted in lowest GY in both years. In conclusion, ‘BAW 1140’, ‘BARI Gom 28’ and ‘BARI Gom 26’ are the recommended wheat genotypes for use under prevailing conditions in Bangladesh.


2021 ◽  
Vol 13 (24) ◽  
pp. 5173
Author(s):  
Xiaofeng Cao ◽  
Yulin Liu ◽  
Rui Yu ◽  
Dejun Han ◽  
Baofeng Su

High throughput phenotyping (HTP) for wheat (Triticum aestivum L.) stay green (SG) is expected in field breeding as SG is a beneficial phenotype for wheat high yield and environment adaptability. The RGB and multispectral imaging based on the unmanned aerial vehicle (UAV) are widely popular multi-purpose HTP platforms for crops in the field. The purpose of this study was to compare the potential of UAV RGB and multispectral images (MSI) in SG phenotyping of diversified wheat germplasm. The multi-temporal images of 450 samples (406 wheat genotypes) were obtained and the color indices (CIs) from RGB and MSI and spectral indices (SIs) from MSI were extracted, respectively. The four indices (CIs in RGB, CIs in MSI, SIs in MSI, and CIs + SIs in MSI) were used to detect four SG stages, respectively, by machine learning classifiers. Then, all indices’ dynamics were analyzed and the indices that varied monotonously and significantly were chosen to calculate wheat temporal stay green rates (SGR) to quantify the SG in diverse genotypes. The correlations between indices’ SGR and wheat yield were assessed and the dynamics of some indices’ SGR with different yield correlations were tracked in three visual observed SG grades samples. In SG stage detection, classifiers best average accuracy reached 93.20–98.60% and 93.80–98.80% in train and test set, respectively, and the SIs containing red edge or near-infrared band were more effective than the CIs calculated only by visible bands. Indices’ temporal SGR could quantify SG changes on a population level, but showed some differences in the correlation with yield and in tracking visual SG grades samples. In SIs, the SGR of Normalized Difference Red-edge Index (NDRE), Red-edge Chlorophyll Index (CIRE), and Normalized Difference Vegetation Index (NDVI) in MSI showed high correlations with yield and could track visual SG grades at an earlier stage of grain filling. In CIs, the SGR of Normalized Green Red Difference Index (NGRDI), the Green Leaf Index (GLI) in RGB and MSI showed low correlations with yield and could only track visual SG grades at late grain filling stage and that of Norm Red (NormR) in RGB images failed to track visual SG grades. This study preliminarily confirms the MSI is more available and reliable than RGB in phenotyping for wheat SG. The index-based SGR in this study could act as HTP reference solutions for SG in diversified wheat genotypes.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


2021 ◽  
Vol 16 (1) ◽  
pp. 641-652
Author(s):  
Sławomir Franaszek ◽  
Bolesław Salmanowicz

Abstract The main purpose of this research was the identification and characterization of low-molecular-weight glutenin subunit (LMW-GS) composition in common wheat and the determination of the effect of these proteins on the rheological properties of dough. The use of capillary zone electrophoresis and reverse-phase high-performance liquid chromatography has made it possible to identify four alleles in the Glu-A3 and Glu-D3 loci and seven alleles in the Glu-B3 locus, encoding LMW-GSs in 70 varieties and breeding lines of wheat tested. To determine the technological quality of dough, analyses were performed at the microscale using a TA.XT Plus Texture Analyzer. Wheat varieties containing the Glu-3 loci scheme (Glu-A3b, Glu-A3f at the Glu-A3 locus; Glu-B3a, Glu-B3b, Glu-B3d, Glu-B3h at the Glu-B3 locus; Glu-D3a, Glu-D3c at the Glu-D3 locus) determined the most beneficial quality parameters.


Sign in / Sign up

Export Citation Format

Share Document