scholarly journals Shear Response of Recycled Aggregates Concrete Deep Beams Containing Steel Fibers and Web Openings

2022 ◽  
Vol 14 (2) ◽  
pp. 945
Author(s):  
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Replacement of natural aggregates (NAs) with recycled concrete aggregates (RCAs) in complex reinforced concrete (RC) structural elements, such as deep beams with openings, supports environmental sustainability in the construction industry. This research investigates the shear response of RC deep beams with openings made with 100% RCAs. It also examines the effectiveness of using steel fibers as a replacement to the minimum conventional steel stirrups in RCA-based deep beams with web openings. A total of seven RC deep beams with a shear span-to-depth ratio (a/h) of 0.8 were constructed and tested. A circular opening with an opening height-to-depth ratio (h0/h) of 0.3 was placed in the middle of each shear span. Test parameters included the type of the coarse aggregate (NAs and RCAs), steel fiber volume fraction (vf = 1, 2, and 3%), and presence of the minimum conventional steel stirrups. The deep beam specimens with web openings made with 100% RCAs exhibited 13 to 18% reductions in the shear capacity relative to those of their counterparts made with NAs. The inclusion of conventional steel stirrups in RC deep beams with openings was less effective in improving the shear response when 100% RCAs was used. The addition of steel fibers remarkably improved the shear response of the tested RCA-based beams. The gain in the shear capacity of the RCA-based beams caused by the inclusion of steel fibers was in the range of 39 to 84%, whereas the use of conventional steel stirrups resulted in 18% strength gain. The use of 1% steel fiber volume fraction in the RCA-based beam with openings without steel stirrups was sufficient to restore 96% of the original shear capacity of the NA-based beam with conventional steel stirrups. The shear capacities obtained from the tests were compared with predictions of published analytical models. The predicted-to-measured shear capacity was in the range of 0.71 to 1.49.

2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 423
Author(s):  
Nancy Kachouh ◽  
Tamer El-Maaddawy ◽  
Hilal El-Hassan ◽  
Bilal El-Ariss

Results of an experimental investigation aimed at studying the effect of steel fibers on the shear behavior of concrete deep beams made with a 100% recycled concrete aggregate (RCA) are presented in this paper. The study comprised testing of seven concrete deep beam specimens with a shear span-to-depth ratio (a/h) of 1.6. Two beams were made of natural aggregates (NAs) without steel fibers, two beams were made of a 100% RCA without steel fibers, and three beams were made of RCA-based concrete with steel fibers at volume fractions (vf) of 1, 2, and 3%. Two of the beams without steel fibers included a minimum shear reinforcement. Test results showed that the beam with a 100% RCA without steel fibers exhibited a lower post-cracking stiffness, reduced shear cracking load, and lower shear capacity than those of the NA-based control beam. The detrimental effect of the RCA on the shear response was less pronounced in the presence of the minimum shear reinforcement. The addition of steel fibers significantly improved the shear response of the RCA-based beams. The post-cracking stiffness of the RCA-based concrete beams with steel fibers coincided with that of a similar beam without fibers containing the minimum shear reinforcement. The use of steel fibers in RCA beams at vf of 1 and 2% restored 80 and 90% of the shear capacity, respectively, of a similar beam with the minimum shear reinforcement. The response of the RCA specimen with vf of 3% outperformed that of the NA-based control beam with the minimum shear reinforcement, indicating that steel fibers can be used in RCA deep beams as a substitution to the minimum shear reinforcement. The shear capacities obtained from the tests were compared with predictions of published analytical models.


2002 ◽  
Vol 124 (2) ◽  
pp. 152-159 ◽  
Author(s):  
Chandra S. Yerramalli ◽  
Anthony M. Waas

The in situ shear response of the matrix in polymer matrix composites (PMC) has been studied. Torsion tests were performed on solid cylinders of unidirectional glass fiber reinforced/vinylester and unidirectional carbon fiber reinforced/vinylester composites. The composite specimens were subjected to a uniform rate of twist. From the composite stress-strain curve, a plot of tangent shear modulus vs shear strain was derived. Then, using the Halpin-Tsai equations, the in situ matrix shear modulus was determined. The in situ matrix properties obtained from glass/vinylester and carbon/vinylester composites were found to be different. In addition, the properties of the in situ matrix were found to be a function of fiber volume fraction and the elastic properties of the reinforcing fiber. The behavior of the in situ matrix as a function of the fiber volume fraction was explained by using a three cylinder interphase model. The validity of the interphase model in predicting the composite shear modulus was studied by comparison of results against a conventional 2 cylinder model.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3254 ◽  
Author(s):  
Li ◽  
Feng ◽  
Ke ◽  
Pan ◽  
Nie

In order to study the direct shear properties of ultra-high performance concrete (UHPC) structures, 15 Z-shaped monolithic placement specimens (MPSs) and 12 Z-shaped waterjet treated specimens (WJTSs) were tested to study the shear behavior and failure modes. The effects of steel fiber shape, steel fiber volume fraction and interface treatment on the direct shear properties of UHPC were investigated. The test results demonstrate that the MPSs were reinforced with steel fibers and underwent ductile failure. The ultimate load of the MPS is about 166.9% of the initial cracking load. However, the WJTSs failed in a typical brittle mode. Increasing the fiber volume fraction significantly improves the shear strength, which can reach 24.72 MPa. The steel fiber type has little effect on the shear strength and ductility, while increasing the length of steel fibers improves its ductility and slightly reduces the shear strength. The direct shear strength of the WJTSs made from 16 mm hooked-type steel fibers can reach 9.15 MPa, which is 2.47 times the direct shear strength of the specimens without fibers. Finally, an interaction formula for the shear and compressive strength was proposed on the basis of the experimental results, to predict the shear load-carrying capacity of the cast-in-place UHPC structures.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


Sign in / Sign up

Export Citation Format

Share Document