scholarly journals Evaluating the Ability of Bone Char/nTiO2 Composite and UV Radiation for Simultaneous Oxidation and Adsorption of Arsenite

2022 ◽  
Vol 3 (1) ◽  
pp. 19-34
Author(s):  
Susan Alkurdi ◽  
Raed Al-Juboori ◽  
Jochen Bundschuh ◽  
Alla Marchuk

The reuse of waste materials for water treatment purposes is an important approach for promoting the circular economy and achieving effective environmental remediation. This study examined the use of bone char/titanium dioxide nanoparticles (BC/nTiO2) composite and UV for As(III) and As(V) removal from water. The composite was produced via two ways: addition of nTiO2 to bone char during and after pyrolysis. In comparison to the uncoated bone char pyrolyzed at 900 °C (BC900), nTiO2 deposition onto bone char led to a decrease in the specific surface area and pore volume from 69 to 38 m2/g and 0.23 to 0.16 cm3/g, respectively. However, the pore size slightly increased from 14 to 17 nm upon the addition of nTiO2. The composite prepared during pyrolysis (BC/nTiO2)P had better As removal than that prepared after pyrolysis with the aid of ultrasound (BC/nTiO2)US (57.3% vs. 24.8%). The composite (BC/nTiO2)P had higher arsenate oxidation than (BC/nTiO2)US by about 3.5 times. Arsenite oxidation and consequent adsorption with UV power of 4, 8 and 12 W was examined and benchmarked against the composite with visible light and BC alone. The highest UV power was found to be the most effective treatment with adsorption capacity of 281 µg/g followed by BC alone (196 µg/g). This suggests that the effect of surface area and pore volume loss due to nTiO2 deposition can only be compensated by applying a high level of UV power.

2014 ◽  
Vol 625 ◽  
pp. 148-151 ◽  
Author(s):  
Rahmam Syuhaidah ◽  
Muti Mohamed Norani ◽  
Suriati Sufian

Carbon Nanotubes (CNT) have emerged and gained great interest for research in many applications because of their unique specific characteristics such as having high porosity, high surface area and the existence of a wide spectrum of surface functional groups through chemical modification. Multiwalled carbon nanotubes (MWCNT) is a type of CNT that comprises of multiple layers of concentric cylinders. The overall study of this research work is to modify MWCNT to become a good adsorbent that can adsorb CO2 at its optimum capacity. In order to make MWCNT as an efficient adsorbent, surface treatment on pristine MWCNT is necessary to overcome the hydrophobicity issue by the introduction of carboxyl group. Upon the surface treatment, functionalization of MWCNT with 3-Aminopropyl triethoxysilane (APTS) was conducted to obtain the attachment of amine group that will assist MWCNT in adsorbing CO2. The surface treatment and functionalization process undergone by MWCNT changed the physical properties of MWCNT such as the surface area, pore volume, and pore size distribution. These properties can be determined using surface area and pore analyzer (SAP). Sample that treated with the mixture of nitric and sulfuric acid (HNO3/H2SO4) and functionalized with APTS gives the lowest surface area (22.07 m2/g) and pore volume (0.06 cm3/g). The pore size distribution also decreases due to the most presence of functional group onto the surface of modified MWCNT. This research paper is focusing on the effect of surface area, pore volume, and pore size distribution on the modified MWCNT.


2017 ◽  
Vol 68 (3) ◽  
pp. 483-486
Author(s):  
Constantin Sorin Ion ◽  
Mihaela Bombos ◽  
Gabriel Vasilievici ◽  
Dorin Bombos

Desulfurisation of atmospheric distillation gasoline and gas oil was performed by adsorption process on Fe/ bentonite. The adsorbent was characterized by determining the adsorption isotherms, specific surface area, pore volume and average pore diameter. Adsorption experiments of atmospheric distillation gasoline and gas oil were performed in continuous system at 280�320oC, 5 atm and volume hourly space velocities of 1�2 h-1. The efficiency of adsorption on Fe / bentonite was better at desulphurisation of gasoline versus gas oil.


2020 ◽  
Vol 10 (24) ◽  
pp. 8967
Author(s):  
Victor Gil Muñoz ◽  
Luisa M. Muneta ◽  
Ruth Carrasco-Gallego ◽  
Juan de Juanes Marquez ◽  
David Hidalgo-Carvajal

The circular economy model offers great opportunities to companies, as it not only allows them to capture additional value from their products and materials, but also reduce the fluctuations of price-related risks and material supply. These risks are present in all kind of businesses not based on the circular economy. The circular economy also enables economic growth without the need for more resources. This is because each unit has a higher value as a result of recycling and reuse of products and materials after use. Following this circular economics framework, the Polytechnic University of Madrid (Universidad Politécnica de Madrid, UPM) has adopted strategies aimed at improving the circularity of products. In particular, this article provides the result of obtaining recycled PLA filament from waste originating from university 3D FFF (fused filament fabrication) printers and waste generated by “Coronamakers” in the production of visors and parts for PPEs (Personal Protective Equipment) during the lockdown period of COVID-19 in Spain. This filament is used in the production of 3D printed parts that university students use in their classes, so the circular loop is closed. The obtained score of Material Circularity Indicator (MCI) of this material has been calculated, indicating its high level of circularity.


2021 ◽  
Vol 13 (8) ◽  
pp. 4113
Author(s):  
Valeria Superti ◽  
Cynthia Houmani ◽  
Ralph Hansmann ◽  
Ivo Baur ◽  
Claudia R. Binder

With increasing urbanisation, new approaches such as the Circular Economy (CE) are needed to reduce resource consumption. In Switzerland, Construction & Demolition (C&D) waste accounts for the largest portion of waste (84%). Beyond limiting the depletion of primary resources, implementing recycling strategies for C&D waste (such as using recycled aggregates to produce recycled concrete (RC)), can also decrease the amount of landfilled C&D waste. The use of RC still faces adoption barriers. In this research, we examined the factors driving the adoption of recycled products for a CE in the C&D sector by focusing on RC for structural applications. We developed a behavioural framework to understand the determinants of architects’ decisions to recommend RC. We collected and analysed survey data from 727 respondents. The analyses focused on architects’ a priori beliefs about RC, behavioural factors affecting their recommendations of RC, and project-specific contextual factors that might play a role in the recommendation of RC. Our results show that the factors that mainly facilitate the recommendation of RC by architects are: a senior position, a high level of RC knowledge and of the Minergie label, beliefs about the reduced environmental impact of RC, as well as favourable prescriptive social norms expressed by clients and other architects. We emphasise the importance of a holistic theoretical framework in approaching decision-making processes related to the adoption of innovation, and the importance of the agency of each involved actor for a transition towards a circular construction sector.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Hyunho Shin ◽  
Jun-Ho Eun

A TiC powder is synthesized from a micron-sized mesoporous metatitanic acid-sucrose precursor (precursor M) by a carbothermal reduction process. Control specimens are also prepared using a nanosized TiO2-sucrose precursor (precursor T) with a higher cost. When synthesized at 1500°C for 2 h in flowing Ar, the characteristics of the synthesized TiC from precursor M are similar to those of the counterpart from precursor T in terms of the crystal size (58.5 versus 57.4 nm), oxygen content (0.22 wt% versus 0.25 wt%), and representative sizes of mesopores: approximately 2.5 and 19.7–25.0 nm in both specimens. The most salient differences of the two specimens are found in the TiC from precursor M demonstrating (i) a higher crystallinity based on the distinctive doublet peaks in the high-two-theta XRD regime and (ii) a lower specific surface area (79.4 versus 94.8 m2/g) with a smaller specific pore volume (0.1 versus 0.2 cm3/g) than the counterpart from precursor T.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


Sign in / Sign up

Export Citation Format

Share Document