scholarly journals An Insight into Valorization of Lignocellulosic Biomass by Optimization with the Combination of Hydrothermal (HT) and Biological Techniques: A Review

2022 ◽  
Vol 3 (1) ◽  
pp. 35-55
Author(s):  
Nalok Dutta ◽  
Muhammad Usman ◽  
Gang Luo ◽  
Shicheng Zhang

Biomass valorization plays a significant role in the production of biofuels and various value-added biochemicals, in addition to lowering greenhouse gas emissions. In terms of biorefining methods, hydrothermal (HT) and biological techniques have demonstrated the capability of valorizing biomass raw materials to yield value added end-products. An inter-disciplinary bio-economical approach is capable of optimizing biomass’s total potential in terms of environmental perspective and circular bioeconomy standpoint. The aim of this review is to provide an in-depth overview of combinatorial HT and biological techniques to maximize biomass value, which includes biological valorization following HT pretreatment and HT valorization of lignocellulosic substrates emanating from biocatalytic hydrolysis/anaerobic digestion and/or pretreated food waste for the ultimate yield of biogas/biochar and biocrude. In this study, we discuss recent advances regarding HT and biological treatment conditions, synergies between the two technologies, and optimal performance. Additionally, energy balances and economic feasibility assessments of alternative integrated solutions reported in previous studies are compared. Furthermore, we conclude by discussing the challenges and opportunities involved in integrating HT and biologicals methods toward complete biomass utilization.

Author(s):  
Deepak Kumar Chauhan ◽  
Venugopala Rao Battula ◽  
Arkaprabha Giri ◽  
Abhijit Patra ◽  
Kamalakannan Kailasam

Strategizing the exploitation of renewable solar light could undoubtedly provide new insight into the field of biomass valorization. Therefore, for the first time, we reported the heterogeneous photocatalytic oxidation route...


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 541 ◽  
Author(s):  
Dan Zhou ◽  
Dongsheng Shen ◽  
Wenjing Lu ◽  
Tao Song ◽  
Meizhen Wang ◽  
...  

Chitin biomass, a rich renewable resource, is the second most abundant natural polysaccharide after cellulose. Conversion of chitin biomass to high value-added chemicals can play a significant role in alleviating the global energy crisis and environmental pollution. In this review, the recent achievements in converting chitin biomass to high-value chemicals, such as 5-hydroxymethylfurfural (HMF), under different conditions using chitin, chitosan, glucosamine, and N-acetylglucosamine as raw materials are summarized. Related research on pretreatment technology of chitin biomass is also discussed. New approaches for transformation of chitin biomass to HMF are also proposed. This review promotes the development of industrial technologies for degradation of chitin biomass and preparation of HMF. It also provides insight into a sustainable future in terms of renewable resources.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 359 ◽  
Author(s):  
Kerstin Wagner ◽  
Maurizio Musso ◽  
Stefan Kain ◽  
Stefan Willför ◽  
Alexander Petutschnigg ◽  
...  

Many of current bio-based materials are not fully or partly used for material utilization, as the composition of their raw materials and/or possible applications are unknown. This study deals with the analysis of the wood extractives from three different tissue of larch wood: Sapwood mainly from outer part of the log, and sound knotwood as well as dead knotwood. The extractions were performed with an accelerated solvent extractor (ASE) using hexane and acetone/water. The obtained extracts were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Three various vibrational spectroscopy (FT-RAMAN, FT-IR and FT-NIR) methods reflect the information from the extracts to the chemical composition of the types of wood before the extraction processes. Multivariate data analysis of the spectra was used to obtain a better insight into possible classification methods. Taxifolin and kaempferol were found in larger amount in sound knotwood samples compared to larch wood with high percentage of sapwood and dead knotwood samples. While the extractions of dead knotwood samples yielded more larixol and resin acids than the other larch wood samples used. Based on the chemical composition, three lead compounds were defined for the classification of the different wood raw materials. The vibrational spectroscopy methods were applied to show their potential for a possible distinction of the three types of larch wood tissue. This new insight into the different larch wood extracts will help in the current efforts to use more environmentally friendly raw materials for innovative applications. The connection between the raw materials and extraction yields of the target values is important to transform the results from the laboratory to industry and consumer applications.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3474 ◽  
Author(s):  
Daissy Restrepo-Serna ◽  
Jimmy Martínez-Ruano ◽  
Carlos Cardona-Alzate

The use of biomass to obtain value-added products has been a good alternative for reducing their environmental impacts. For this purpose, different studies have been carried out focused on the use of agro-industrial waste. One of the most commonly used raw materials has been bagasse obtained from the processing of sugarcane in high quantities in countries like Brazil, India, China, Thailand, Pakistan, Mexico, Colombia, Indonesia, Philippines, and the United States. From 1 ton of sugarcane, 280 kg of bagasse can be obtained. Sugarcane bagasse (SCB) is a waste that is rich in polysaccharides, which makes it a promising raw material for obtaining products under biorefinery concept. The objective of this work was to analyze from the energetic point of view, different biorefinery schemes in which SCB is employed as a raw material. The design and simulation of the different biorefinery schemes is performed in Aspen Plus software. From this software, it was possible to obtain the different mass and energy balances, which are used in the technical and energetic analysis. Exergy is used as a comparison tool for the energy analysis. These analyses allowed for the selection of the best biorefinery configuration from SCB.


Author(s):  
Shwe Sin Win ◽  
Swati Hegde ◽  
Thomas A. Trabold

Crude (i.e., unrefined) glycerol is the major by-product of biodiesel production, based on the homogeneous alkaline catalytic transesterification reaction. Currently, global biodiesel production capacity has been rising rapidly due to the overall growth of renewable energy demand. The amount of glycerol is increasing in parallel, and there is presently little market value for crude glycerol. In addition, disposing of this material via conventional methods becomes one of the major environmental issues and a burden for biodiesel manufacturers. Thus, utilization of purified glycerol in value-added applications such as food processing, cosmetics, soap and pharmaceuticals is critical to achieve economic scale of biodiesel production. In this paper, various pathways available to community-based biodiesel producers have been modeled to inform the decision-making process. A case study at Rochester Institute of Technology (RIT) was selected to evaluate the proposed system. Different pathways of utilizing crude glycerol were investigated, and economic feasibility of each pathway was analyzed. Purification of crude glycerol from waste cooking oil-based-biodiesel production was performed at small bench scale. Various recipes with different raw materials and purified glycerol as an ingredient were created for different kinds of saponification processes and applications. The resulting data from this preliminary assessment showed that producing biodiesel and high-quality soap is the most profitable option for RIT.


2012 ◽  
pp. 53-58
Author(s):  
S. Afontsev ◽  
N. Zubarevich

The questions of spatial development as a modernization driver (the Kazakhstan case) are considered in this article. The analysis of the regional economic differences makes possible to work out the development guidelines, based on the advantages combination of the basic goods specialization and the policy of transferring growth impulses from the raw materials sector to the industry and service ones. Current challenges and opportunities, which face the Kazakhstan economy, the questions of economic diversification drive up the importance of the connection between spatial development and the cluster priorities. The analytical scheme of macro-regions and diversification through the dynamic focal networks can settle up these challenges.


2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Subiyanto Subiyanto

Palm oil industry in Indonesia has been growing rapidly. But, unfortunately the growth is only effective on upstream industry with low value products, such that potential downstream value added are not explored proportionally. The government is therefore in the process of developing an appropriate policy to strengthen the national palm oil downstream industry. This paper proposes that an approriate policy for developing palm oil downstream industry could be derived from the maps of value chain and existing technology capability of the industry. The result recommends that government policy should emphasize on the supply of raw materials, infrastructure and utilities, as well as developing the missing value chain industry, especially ethoxylation and sulfonation.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1221
Author(s):  
Domenico Frattini ◽  
Gopalu Karunakaran ◽  
Eun-Bum Cho ◽  
Yongchai Kwon

The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3052
Author(s):  
Diego Cardoza ◽  
Inmaculada Romero ◽  
Teresa Martínez ◽  
Encarnación Ruiz ◽  
Francisco J. Gallego ◽  
...  

A biorefinery integrated process based on lignocellulosic feedstock is especially interesting in rural areas with a high density of agricultural and agro-industrial wastes, which is the case for olive crop areas and their associated industries. In the region of Andalusia, in the south of Spain, the provinces of Jaén, Córdoba and Seville accumulate more than 70% of the olive wastes generated in Spain. Therefore, the valorisation of these wastes is a matter of interest from both an environmental and a social point of view. The olive biorefinery involves a multi-product process from different raw materials: olive leaves, exhausted olive pomace, olive stones and olive tree pruning residues. Biorefinery processes associated with these wastes would allow their valorisation to produce bioenergy and high value-added renewable products. In this work, using geographic information system tools, the biomass from olive crop fields, mills and olive pomace-extracting industries, where these wastes are generated, was determined and quantified in the study area. In addition, the vulnerability of the territory was evaluated through an environmental and territorial analysis that allowed for the determination of the reception capacity of the study area. Then, information layers corresponding to the availability of the four biomass wastes, and layers corresponding to the environmental fragility of the study area were overlapped and they resulted in an overall map. This made it possible to identify the best areas for the implementation of the biorefineries based on olive-derived biomass. Finally, as an example, three zones were selected for this purpose. These locations corresponded to low fragility areas with a high availability of biomass (more than 300,000 tons/year) in a 30 km radius, which would ensure the biomass supply.


2021 ◽  
Vol 172 ◽  
pp. 130-144
Author(s):  
Ali Khosravanipour Mostafazadeh ◽  
Maria Samantha De La Torre ◽  
Yessika Padilla ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document