scholarly journals Finding College Student Social Networks by Mining the Records of Student ID Transactions

Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 307 ◽  
Author(s):  
Jing-Ya Xu ◽  
Tao Liu ◽  
Lin-Tao Yang ◽  
Mark Davison ◽  
Shou-Yin Liu

Information about college students’ social networks plays a pivotal role in college students’ mental health monitoring and student management. While there have been many studies to infer social networks by data mining, the mining of college students’ social networks lacks consideration of homophily. College students’ social behaviors show significant homophily in the aspect of major and grade. Consequently, the inferred inter-major and inter-grade social ties will be erroneously omitted without considering such an effect. In this work, we aimed to increase the fidelity of the extracted networks by alleviating the homophily effect. To achieve this goal, we propose a method that combines the sliding time-window method with the hierarchical encounter model based on association rules. Specifically, we first calculated the counts of spatial–temporal co-occurrences of each student pair. The co-occurrences were acquired by the sliding time-window method, which takes advantage of the symmetry of the social ties. We then applied the hierarchical encounter model based on association rules to extract social networks by layer. Furthermore, we propose an adaptive method to set co-occurrence thresholds. Results suggested that our model infers the social networks of students with better fidelity, with the proportion of extracted inter-major social ties in entire social ties increasing from 0.89% to 5.45% and the proportion of inter-grade social ties rising from 0.92% to 4.65%.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Clio Andris ◽  
Dipto Sarkar

<p><strong>Abstract.</strong> Interpersonal relationships are an important part of social and personal health. Studies of social capital show that individuals and communities with stronger ties are have an economic and health advantage. Yet, loneliness and isolation are becoming major public health issues. There is a pressing need to measure where relationships are strong and how accessible one’s social ties are, in order to learn how to better support face-to-face meetings and promote social health in society. However, the datasets we use to study people and human behaviour are most often mobility data and census data &amp;ndash; which tell us little about personal relationships. These data can be augmented with information about where people have ties, and how their relationships unfold over geographic space. The data we use to study the built environment include building footprints and infrastructure, and we can annotate these data by how (well) infrastructure supports different kinds of relationships, in order to ask new questions about how the landscape encourages relationships.</p><p> We suggest a list of methods for representing interpersonal relationships and social life at various socio-spatial levels of aggregation. We give an example of each, with an effort to span various use cases and spatial scales of data modelling.</p><p> <strong>Dyads (line) and Ego-based (star):</strong> This geometric model represents a relationship between two individuals (Figure 1A). The individuals can be geolocated to households, administrative units, real-time locations, etc. The tie can be given a nominal category such as family or co-worker, and edge weights that signify reported relationship strength, frequency of contact, frequency of face-to-face meeting, et cetera. Star models represent a central individual and his/her geolocated ties (that radiate from the centre). The star illustrates the theoretical concept of personal extensibility.</p><p> <strong>Points of Interest (points):</strong> Points of interest provide a place-based perspective (note that these entities can also be represented as polygons such as building footprints, or lines such as gradients of interaction on a subway). Certain places are better suited for fostering relationships than others (Figure 1B), and each can be annotated with their ability to foster: new ties (a nightclub), gender-bonding ties (bowling leagues), romantic ties (romantic restaurants), inter-generational ties (a religious facility), professional ties (conferences), et cetera.</p><p> <strong>Polygons/Administrative Units (polygons):</strong> These data are attached to administrative areal units (Census boundaries, provinces, zones, etc.). The data represent surveyed data on relationship-related variables in censuses, social surveys and social capital surveys. These surveys ask about trust, friendliness with neighbours, social life, belongingness to institutions, and more (Figure 1C), illustrating the social health of an area.</p><p> <strong>Aggregate Flows and Social Networks (lies and networks):</strong> This model illustrates the geolocated, social ties within a spatial extent, i.e. the social networks of a group of many people over a large extent (Figure 1D). Data can be sourced from social media, telecommunications patterns, and other declarations of relationships.</p><p> <strong>Regions (polygons):</strong> Regions, that may describe neighbourhoods within one city, or an agglomeration of cities, can be defined by social ties. Instead of commuting or economic ties, regions are defined by a preponderance of social ties within a given polygon, and a lack of ties between polygons (or between the polygon and any external area). Social regions represent a likeness and strong ties between the people that live within the region (Figure 1E).</p><p> Given these methods for representing social life and interpersonal relationships as GIS data, new questions may arise. At the <strong>dyadic level</strong>: how can we map the presence of a relationship between two people? At the <strong>ego-based level</strong>: how far and with what kind of diversity do people have ties? At the <strong>point of interest level</strong>: what kinds of mapable data can describe places’ ability to create new relationships and foster existing relationships? At the <strong>polygonal level</strong>: what kinds of mapable data can show where relationships are strong or weak? At the <strong>levels of flows and networks</strong>: what kinds of mapable data can describe systems of diffusion? At the <strong>regional level</strong>: what physical and administrative boundaries guide social ties?</p><p> For cartographers and geographic modellers looking to study social life, data acquisition, analysis, and mapping are challenges. The point of this extended abstract is to inventory the possibilities of mapping these data, open a dialog for experimenting with what kinds of symbologies, associated variables, classification schemes, visualization techniques and data collection opportunities are available for this purpose. We also hope to create spaces for comparative studies that describe the implications of these choices. In our search, we find that the major research challenges are the following: 1) privacy 2) geolocatable data 3) qualitative vs. quantitative data and 4) assurance statistically-significant samples sizes 5) analysis and modelling 6) visualization. Nevertheless, our goal is to make these indicators and data more GIS-friendly and available to geospatial analysts, modellers and cartographers.</p>



2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Huazhang Liu

With the rapid development of the Internet, social networks have shown an unprecedented development trend among college students. Closer social activities among college students have led to the emergence of college students with new social characteristics. The traditional method of college students’ group classification can no longer meet the current demand. Therefore, this paper proposes a social network link prediction method-combination algorithm, which combines neighbor information and a random block. By mining the social networks of college students’ group relationships, the classification of college students’ groups can be realized. Firstly, on the basis of complex network theory, the essential relationship of college student groups under a complex network is analyzed. Secondly, a new combination algorithm is proposed by using the simplest linear combination method to combine the proximity link prediction based on neighbor information and the likelihood analysis link prediction based on a random block. Finally, the proposed combination algorithm is verified by using the social data of college students’ networks. Experimental results show that, compared with the traditional link prediction algorithm, the proposed combination algorithm can effectively dig out the group characteristics of social networks and improve the accuracy of college students’ association classification.



2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Nauman Ali Khan ◽  
Sihai Zhang ◽  
Wuyang Zhou ◽  
Ahmad Almogren ◽  
Ikram Ud Din ◽  
...  

Stochastic Internet of Things (IoT)-based communication behavior of the progressing world is tremendously impacting social networks. The growth of social networks helps to quantify the effect on the Social Internet of Things (SIoT). Multiple existences of two persons at several geographical locations in different time frames hint to predict the social connection. We investigate the extent to which social ties between people can be inferred by critically reviewing the social networks. Our study used Chinese telecommunication-based anonymized caller data records (CDRs) and two openly available location-based social network data sets, Brightkite and Gowalla. Our research identified social ties based on mobile communication data and further exploits communication reasons based on geographical location. This paper presents an inference framework that predicts the missing ties as suspicious social connections using pipe and filter architecture-based inference framework. It highlights the secret relationship of users, which does not exist in real data. The proposed framework consists of two major parts. Firstly, users’ cooccurrence based on the mutual location in a specific time frame is computed and inferred as social ties. Results are investigated based upon the cooccurrence count, the gap time threshold values, and mutual friend count values. Secondly, the detail about direct connections is collected and cross-related to the inferred results using Precision and Recall evaluation measures. In the later part of the research, we examine the false-positive results methodically by studying the human cooccurrence patterns to identify hidden relationships using a social activity. The outcomes indicate that the proposed approach achieves comprehensive results that further support the theory of suspicious ties.



Author(s):  
Weiyu Zhang ◽  
Rong Wang

This paper examines interest-oriented vs. relationship-oriented social network sites in China and their different implications for collective action. By utilizing a structural analysis of the design features and a survey of members of the social networks, this paper shows that the way a social network site is designed strongly suggests the formation and maintenance of different types of social ties. The social networks formed among strangers who share common interests imply different types of collective action, compared to the social networks that aim at the replication and strengthening of off-line relationships.



2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Kalina Grzesiuk

Companies which decide on socially responsible activities usually take into consideration benefits including the marketing effects of CSR programmes. However, in order to achieve that, the information about the socially responsible activities of companies must be spread and reach the audience of the company. That includes stakeholders related to the company that might be interested in receiving information about the social initiatives undertaken by the company. These stakeholders are connected with the firm through the network of social ties (SN). The main goal of this article is to present a theoretical framework of roles that these networks of social ties play in the effective communication of CSR activities. This paper is divided into three parts. The first one concerns the problem of how to communicate the involvement of a company in social initiatives. The second one contains the description of possible communication processes and strategies. The last one presents the analysis of the social networks perspective and its main characteristics and, in conclusion, it summarizes the main benefits a company can gain by applying the SN concept to CSR communication in the area of attribution and information spread through various channels.





2007 ◽  
Vol 54 (3) ◽  
pp. 179-198 ◽  
Author(s):  
Jeffrey K. Hass ◽  
Tony Walter

How do people respond to the grief of parents over the death of their infant child? This article documents the experience of one of the authors, an American married to a Russian whose child died in England. Responses to this death by friends, colleagues and family in the USA, England, and two cities in Russia varied considerably in terms of depth and degree of engagement (emotional engagement, respect, or distance and avoidance). What factors underlie these varied responses? Two are identified, one structural, the other cultural: the strength of the social ties within social networks, and religiosity as historically sedimented within a culture. The degree of engagement is correlated with network form; but the content of engagement depends on religiosity.



Management ◽  
2019 ◽  
Author(s):  
Sana Ansari ◽  
Dalhia Mani

The field of social networks focuses on the relationships among social actors, and on patterns that emerge from the structure of the social network and its implications (Wasserman and Faust’s Social Network Analysis: Methods and Applications). Social network research argues that actors (e.g., individuals or firms) are embedded within a network of relations, and that their behavior and choices cannot be studied independent of the social relations that shape and structure behavior. Social network perspective views relations among the social actors as ties and regular patterns in relationship as structure. Ties are the relational linkages that allow flow of resources between the actors, both tangible and intangible. Multiple actors form a web of relational ties, which can be either economic, social, or political. Networks can be of different types based on the content of the relational tie between the actors. For instance, collaboration ties between actors make a collaboration network or a co-author relation between actors makes a co-authorship network. Networks can also be at different levels of analysis—for instance, an intraorganizational friendship network is at the level of individuals while a network of intercountry trade relations is at the level of country. Ties between actors can be of different strengths (for instance, friends who meet daily versus once a year) and can also be negative or positive ties (e.g., competition networks versus collaboration networks). This article summarizes the latest research on social ties and network structure by focusing on the main thematic discussions in the field: (1) networks and strategic, governance behavior; (2) workplace networks; (3) collaboration and knowledge networks; (4) networks, personality, and individual differences; (5) entrepreneurial and family business networks; and (6) networks and social media. To ensure a comprehensive review of the topic, the article used search keywords, “networks,” or “network structure,” or “social networks,” or “social ties,” and was limited to articles in the top fourteen management journals, namely: Academy of Management Journal, Strategic Management Journal, Organization Science, Management Science, American Journal of Sociology, American Sociological Review, Administrative Science Quarterly, Academy of Management Review, Journal of Management Studies, Journal of Business Venturing, and Entrepreneurship Theory and Practice. The search was further limited to the six-year period from 2014–2019, since previous articles on organizational networks and brokerage in Oxford Bibliographies have summarized the research in this domain prior to 2014.



2018 ◽  
Vol 11 (3) ◽  
pp. 439-448 ◽  
Author(s):  
Jeremiah T. McMillan ◽  
Kristen Shockley ◽  
Dorothy R. Carter

Gardner, Ryan, and Snoeyink (2018) provide illuminating analyses regarding the role of gender in career advancement within industrial and organizational (I-O) psychology. One of their suggestions for further advancing this area of research is to examine homophily, defined as the tendency for individuals to have social ties with those who are similar to themselves, in the social networks of men and women in the field. Such research is warranted because social networks—in particular, the networks of research collaboration relationships (e.g., publications, grants) scientists develop throughout their careers—are critical to success in academia (e.g., Bozeman & Corley, 2004).



2020 ◽  
Vol 16 (3) ◽  
pp. 657-685 ◽  
Author(s):  
Sa'ad Ali ◽  
David Weir

AbstractThis article offers a synthesis of understandings of wasta, seen as a form of social network prevalent in the Arab Middle East. Whilst there has been increasing interest in this practice, research remains fragmented and has been criticised for its limited theoretical rigor. To address this issue, a systematic review of peer-reviewed journal articles exploring wasta published between 1993 and 2019 was conducted. We analysed the identified papers according to the theoretical lens from which wasta was viewed, creating a bridge between a theoretical focus on the macro aspect of wasta and an alternative focus on its micro aspects, leading to the development of a holistic model of wasta. The model also helps us to understand the complexity of wasta, both as the network itself and as the social ties that exist among its members, and sheds light on the complex nature of the role and interactions of the wasta. The findings respond to calls for more holistic and inclusive research to inform social networks research and bridge the micro–macro divide. This article offers recommendations to future researchers to build on the holistic and emic approach to wasta research adopted here.



Sign in / Sign up

Export Citation Format

Share Document