scholarly journals A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Yumei Zou ◽  
Xin Zhang ◽  
Hongyu Li

In this article, some new Lyapunov-type inequalities for a class of fractional boundary value problems are established by use of the nonsymmetry property of Green’s function corresponding to appropriate boundary conditions.

1987 ◽  
Vol 30 (1) ◽  
pp. 28-35 ◽  
Author(s):  
P. W. Eloe

AbstractLet G(x,s) be the Green's function for the boundary value problem y(n) = 0, Ty = 0, where Ty = 0 represents boundary conditions at two points. The signs of G(x,s) and certain of its partial derivatives with respect to x are determined for two classes of boundary value problems. The results are also carried over to analogous classes of boundary value problems for difference equations.


Author(s):  
Rui A. C. Ferreira

AbstractIn this note we present a Lyapunov-type inequality for a fractional boundary value problem with anti-periodic boundary conditions, that we show to be a generalization of a classical one. Moreover, we address the issue of further research directions for such type of inequalities.


Author(s):  
John Graef ◽  
Lingju Kong ◽  
Qingkai Kong ◽  
Min Wang

AbstractThe authors study a type of nonlinear fractional boundary value problem with non-homogeneous integral boundary conditions. The existence and uniqueness of positive solutions are discussed. An example is given as the application of the results.


2021 ◽  
Vol 40 (4) ◽  
pp. 873-884
Author(s):  
Jagan Mohan Jonnalagadda ◽  
Debananda Basua

In this article, we establish a Lyapunov-type inequality for a two-point Riemann-Liouville type fractional boundary value problem associated with well-posed anti-periodic boundary conditions. As an application, we estimate a lower bound for the eigenvalue of the corresponding fractional eigenvalue problem.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 910
Author(s):  
Bhuvaneswari Sambandham ◽  
Aghalaya S. Vatsala ◽  
Vinodh K. Chellamuthu

The generalized monotone iterative technique for sequential 2 q order Caputo fractional boundary value problems, which is sequential of order q, with mixed boundary conditions have been developed in our earlier paper. We used Green’s function representation form to obtain the linear iterates as well as the existence of the solution of the nonlinear problem. In this work, the numerical simulations for a linear nonhomogeneous sequential Caputo fractional boundary value problem for a few specific nonhomogeneous terms with mixed boundary conditions have been developed. This in turn will be used as a tool to develop the accurate numerical code for the linear nonhomogeneous sequential Caputo fractional boundary value problem for any nonhomogeneous terms with mixed boundary conditions. This numerical result will be essential to solving a nonlinear sequential boundary value problem, which arises from applications of the generalized monotone method.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


Author(s):  
Johnny Henderson ◽  
Nickolai Kosmatov

AbstractWe apply the theory for u 0-positive operators to obtain eigenvalue comparison results for a fractional boundary value problem with the Caputo derivative.


Sign in / Sign up

Export Citation Format

Share Document