scholarly journals PrismatoidPatNet54: An Accurate ECG Signal Classification Model Using Prismatoid Pattern-Based Learning Architecture

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1914
Author(s):  
Mehmet Ali Kobat ◽  
Ozkan Karaca ◽  
Prabal Datta Barua ◽  
Sengul Dogan

Background and objective: Arrhythmia is a widely seen cardiologic ailment worldwide, and is diagnosed using electrocardiogram (ECG) signals. The ECG signals can be translated manually by human experts, but can also be scheduled to be carried out automatically by some agents. To easily diagnose arrhythmia, an intelligent assistant can be used. Machine learning-based automatic arrhythmia detection models have been proposed to create an intelligent assistant. Materials and Methods: In this work, we have used an ECG dataset. This dataset contains 1000 ECG signals with 17 categories. A new hand-modeled learning network is developed on this dataset, and this model uses a 3D shape (prismatoid) to create textural features. Moreover, a tunable Q wavelet transform with low oscillatory parameters and a statistical feature extractor has been applied to extract features at both low and high levels. The suggested prismatoid pattern and statistical feature extractor create features from 53 sub-bands. A neighborhood component analysis has been used to choose the most discriminative features. Two classifiers, k nearest neighbor (kNN) and support vector machine (SVM), were used to classify the selected top features with 10-fold cross-validation. Results: The calculated best accuracy rate of the proposed model is equal to 97.30% using the SVM classifier. Conclusion: The computed results clearly indicate the success of the proposed prismatoid pattern-based model.

Author(s):  
Rania Salah El-Sayed ◽  
Mohamed Nour El-Sayed

This paper proposes an efficient model for recognizing and classifying a vehicle type. The model localizes each object in the image then identifies the vehicle type. The features of an image are extracted using the histogram oriented gradients (HOG) and ant colony optimization (ACO). A vehicle type is determined using different classifiers namely: the k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and Softmax classifiers. The model is implemented and operated on two datasets of vehicles' images as test-beds. From the comparative study, the SVM outperforms the other adopted classifiers and is also better using HOG than that using ACO. A modification is done on HOG by adding the Laplacian filter to select the most significant image features. The accuracy of the SVM classifier using modified HOG outperforms that one using the traditional HOG. The proposed model is analyzed and discussed regardless the local geometric and photometric transformations like illumination variations.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6365
Author(s):  
Jung Hwan Kim ◽  
Chul Min Kim ◽  
Man-Sung Yim

This study proposes a scheme to identify insider threats in nuclear facilities through the detection of malicious intentions of potential insiders using subject-wise classification. Based on electroencephalography (EEG) signals, a classification model was developed to identify whether a subject has a malicious intention under scenarios of being forced to become an insider threat. The model also distinguishes insider threat scenarios from everyday conflict scenarios. To support model development, 21-channel EEG signals were measured on 25 healthy subjects, and sets of features were extracted from the time, time–frequency, frequency and nonlinear domains. To select the best use of the available features, automatic selection was performed by random-forest-based algorithms. The k-nearest neighbor, support vector machine with radial kernel, naïve Bayes, and multilayer perceptron algorithms were applied for the classification. By using EEG signals obtained while contemplating becoming an insider threat, the subject-wise model identified malicious intentions with 78.57% accuracy. The model also distinguished insider threat scenarios from everyday conflict scenarios with 93.47% accuracy. These findings could be utilized to support the development of insider threat mitigation systems along with existing trustworthiness assessments in the nuclear industry.


Author(s):  
SHITALA PRASAD ◽  
GYANENDRA K. VERMA ◽  
BHUPESH KUMAR SINGH ◽  
PIYUSH KUMAR

This paper, proposes a novel approach for feature extraction based on the segmentation and morphological alteration of handwritten multi-lingual characters. We explored multi-resolution and multi-directional transforms such as wavelet, curvelet and ridgelet transform to extract classifying features of handwritten multi-lingual images. Evaluating the pros and cons of each multi-resolution algorithm has been discussed and resolved that Curvelet-based features extraction is most promising for multi-lingual character recognition. We have also applied some morphological operation such as thinning and thickening then feature level fusion is performed in order to create robust feature vector for classification. The classification is performed with K-nearest neighbor (K-NN) and support vector machine (SVM) classifier with their relative performance. We experiment with our in-house dataset, compiled in our lab by more than 50 personnel.


2021 ◽  
Author(s):  
Monika Jyotiyana ◽  
Nishtha Kesswani ◽  
Munish Kumar

Abstract Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Classification and Regression Trees, Random Forest, Linear Regression, Logistic Regression, Multi-Layer Perceptron, and Naive Bayes.


2020 ◽  
Vol 10 (3) ◽  
pp. 769-774
Author(s):  
Shiliang Shao ◽  
Ting Wang ◽  
Chunhe Song ◽  
Yun Su ◽  
Xingchi Chen ◽  
...  

In this paper, eight novel instantaneous indices of short-time heart rate variability (HRV) signals are proposed for prediction of cardiovascular and cerebrovascular events. The indices are based on Bubble Entropy (BE) and Singular Value Decompose (SVD). The process of indices calculation is as follows, firstly, the instantaneous amplitude (IA), instantaneous frequency (IF) and instantaneous phase (IP) of HRV signals are estimated by the Hilbert transform. Secondly, according to the HRV, IA, IP and IF, the BE and singular value (SV) is calculated, then eight novel indices are obtained, they are BEHRV, BEIA, BEIF, BEIP, SVHRV, SVIA, SVIF and SVIP. Last but not least, in order to evaluate the performance of the eight novel indices for prediction of cardiovascular and cerebrovascular events, the difference analysis of eight indices is carried out by t-test. According to the p value, seven of the eight indices BEHRV, BEIA, BEIF, BEIP, SVIA, SVIF and SVIP are thought to be the indices to discriminate the E group and N group. The K-nearest neighbor (KNN), support vector machine (SVM) and decision tree (DT) are applied on the seven novel indices. The results are that, seven novel indices are significantly different between the events and non-events groups, and the SVM classifier has the highest classification Acc and Spe for prediction of cardiovascular and cerebrovascular events, they are 88.31% and 90.19%, respectively.


2012 ◽  
Vol 263-266 ◽  
pp. 1773-1777
Author(s):  
Hong Yu ◽  
Xiao Lei Huang ◽  
Zhi Ling Wei ◽  
Chen Xia Yang

Mining (classify or clustering) retrieval results to serve relevance feedback mechanism of search engine is an important solution to improve effectiveness of retrieval. Unlike plain text documents, since the XML documents are semi-structured data, for XML retrieval results classification, consider exploiting structure features of XML documents, such as tag paths and edges etc. We propose to use Support Vector Machine (SVM) classifier to classify XML retrieval results exploiting both their content and structure features. We implemented the classification method on XML retrieval results based on the IEEE SC corpus. Compared with k-nearest neighbor classification (KNN) on the same dataset in our application, SVM perform better. The experiment results have also shown that the use of structure features, especially tag paths and edges, can improve the classification performance significantly.


2021 ◽  
Vol 7 ◽  
pp. e437
Author(s):  
Arushi Agarwal ◽  
Purushottam Sharma ◽  
Mohammed Alshehri ◽  
Ahmed A. Mohamed ◽  
Osama Alfarraj

In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.


2021 ◽  
Vol 5 (6) ◽  
pp. 1083-1089
Author(s):  
Nur Ghaniaviyanto Ramadhan

News is information disseminated by newspapers, radio, television, the internet, and other media. According to the survey results, there are many news titles from various topics spread on the internet. This of course makes newsreaders have difficulty when they want to find the desired news topic to read. These problems can be solved by grouping or so-called classification. The classification process is carried out of course by using a computerized process. This study aims to classify several news topics in Indonesian language using the KNN classification model and word2vec to convert words into vectors which aim to facilitate the classification process. The use of KNN in this study also determines the optimal K value to be used. In addition to using the classification model, this study also uses a word embedding-based model, namely word2vec. The results obtained using the word2vec and KNN models have an accuracy of 89.2% with a value of K=7. The word2vec and KNN models are also superior to the support vector machine, logistic regression, and random forest classification models.  


2013 ◽  
Vol 23 (03) ◽  
pp. 1350009 ◽  
Author(s):  
U. RAJENDRA ACHARYA ◽  
RATNA YANTI ◽  
JIA WEI ZHENG ◽  
M MUTHU RAMA KRISHNAN ◽  
JEN HONG TAN ◽  
...  

Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.


2021 ◽  
Vol 11 (5) ◽  
pp. 2005
Author(s):  
Toan Huy Bui ◽  
Kazuhiko Hamamoto ◽  
May Phu Paing

Caries is the most well-known disease and relates to the oral health of billions of people around the world. Despite the importance and necessity of a well-designed detection method, studies in caries detection are still limited and show a restriction in performance. In this paper, we proposed a computer-aided diagnosis (CAD) method to detect caries among normal patients using dental radiographs. The proposed method mainly consists of two processes: feature extraction and classification. In the feature extraction phase, the chosen 2D tooth image was employed to extract deep activated features using a deep pre-trained model and geometric features using mathematic formulas. Both feature sets were then combined, called fusion feature, to complement each other defects. Then, the optimal fusion feature set was fed into well-known classification models such as support vector machine (SVM), k-nearest neighbor (KNN), decision tree (DT), Naïve Bayes (NB), and random forest (RF) to determine the best classification model that fit the fusion features set and perform the most preeminent result. The results show 91.70%, 90.43%, and 92.67% for accuracy, sensitivity, and specificity, respectively. The proposed method has outperformed the previous state-of-the-art and shows promising results when none of the measured factors is less than 90%; therefore, the method is promising for dentists and capable of wide-scale implementation caries detection in hospitals.


Sign in / Sign up

Export Citation Format

Share Document