scholarly journals ROA-CONS: Raccoon Optimization for Job Scheduling

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2270
Author(s):  
Sina Zangbari Koohi ◽  
Nor Asilah Wati Abdul Hamid ◽  
Mohamed Othman ◽  
Gafurjan Ibragimov

High-performance computing comprises thousands of processing powers in order to deliver higher performance computation than a typical desktop computer or workstation in order to solve large problems in science, engineering, or business. The scheduling of these machines has an important impact on their performance. HPC’s job scheduling is intended to develop an operational strategy which utilises resources efficiently and avoids delays. An optimised schedule results in greater efficiency of the parallel machine. In addition, processes and network heterogeneity is another difficulty for the scheduling algorithm. Another problem for parallel job scheduling is user fairness. One of the issues in this field of study is providing a balanced schedule that enhances efficiency and user fairness. ROA-CONS is a new job scheduling method proposed in this paper. It describes a new scheduling approach, which is a combination of an updated conservative backfilling approach further optimised by the raccoon optimisation algorithm. This algorithm also proposes a technique of selection that combines job waiting and response time optimisation with user fairness. It contributes to the development of a symmetrical schedule that increases user satisfaction and performance. In comparison with other well-known job scheduling algorithms, the simulation assesses the effectiveness of the proposed method. The results demonstrate that the proposed strategy offers improved schedules that reduce the overall system’s job waiting and response times.

2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Xiaocheng Liu ◽  
Bin Chen ◽  
Xiaogang Qiu ◽  
Ying Cai ◽  
Kedi Huang

An increasing number of high performance computing parallel applications leverages the power of the cloud for parallel processing. How to schedule the parallel applications to improve the quality of service is the key to the successful host of parallel applications in the cloud. The large scale of the cloud makes the parallel job scheduling more complicated as even simple parallel job scheduling problem is NP-complete. In this paper, we propose a parallel job scheduling algorithm named MEASY. MEASY adopts migration and consolidation to enhance the most popular EASY scheduling algorithm. Our extensive experiments on well-known workloads show that our algorithm takes very good care of the quality of service. For two common parallel job scheduling objectives, our algorithm produces an up to 41.1% and an average of 23.1% improvement on the average response time; an up to 82.9% and an average of 69.3% improvement on the average slowdown. Our algorithm is robust even in terms that it allows inaccurate CPU usage estimation and high migration cost. Our approach involves trivial modification on EASY and requires no additional technique; it is practical and effective in the cloud environment.


2013 ◽  
Vol 662 ◽  
pp. 957-960 ◽  
Author(s):  
Jing Liu ◽  
Xing Guo Luo ◽  
Xing Ming Zhang ◽  
Fan Zhang

Cloud computing is an emerging high performance computing environment with a large scale, heterogeneous collection of autonomous systems and flexible computational architecture. The performance of the scheduling system influences the cost benefit of this computing paradigm. To reduce the energy consumption and improve the profit, a job scheduling model based on the particle swarm optimization(PSO) algorithm is established for cloud computing. Based on open source cloud computing simulation platform CloudSim, compared to GA and random scheduling algorithms, the results show that the proposed algorithm can obtain a better solution concerning the energy cost and profit.


Author(s):  
Bushra Jamil ◽  
Mohammad Shojafar ◽  
Israr Ahmed ◽  
Atta Ullah ◽  
Kashif Munir ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9414 ◽  
Author(s):  
David Bridges ◽  
Alain Pitiot ◽  
Michael R. MacAskill ◽  
Jonathan W. Peirce

Many researchers in the behavioral sciences depend on research software that presents stimuli, and records response times, with sub-millisecond precision. There are a large number of software packages with which to conduct these behavioral experiments and measure response times and performance of participants. Very little information is available, however, on what timing performance they achieve in practice. Here we report a wide-ranging study looking at the precision and accuracy of visual and auditory stimulus timing and response times, measured with a Black Box Toolkit. We compared a range of popular packages: PsychoPy, E-Prime®, NBS Presentation®, Psychophysics Toolbox, OpenSesame, Expyriment, Gorilla, jsPsych, Lab.js and Testable. Where possible, the packages were tested on Windows, macOS, and Ubuntu, and in a range of browsers for the online studies, to try to identify common patterns in performance. Among the lab-based experiments, Psychtoolbox, PsychoPy, Presentation and E-Prime provided the best timing, all with mean precision under 1 millisecond across the visual, audio and response measures. OpenSesame had slightly less precision across the board, but most notably in audio stimuli and Expyriment had rather poor precision. Across operating systems, the pattern was that precision was generally very slightly better under Ubuntu than Windows, and that macOS was the worst, at least for visual stimuli, for all packages. Online studies did not deliver the same level of precision as lab-based systems, with slightly more variability in all measurements. That said, PsychoPy and Gorilla, broadly the best performers, were achieving very close to millisecond precision on several browser/operating system combinations. For response times (measured using a high-performance button box), most of the packages achieved precision at least under 10 ms in all browsers, with PsychoPy achieving a precision under 3.5 ms in all. There was considerable variability between OS/browser combinations, especially in audio-visual synchrony which is the least precise aspect of the browser-based experiments. Nonetheless, the data indicate that online methods can be suitable for a wide range of studies, with due thought about the sources of variability that result. The results, from over 110,000 trials, highlight the wide range of timing qualities that can occur even in these dedicated software packages for the task. We stress the importance of scientists making their own timing validation measurements for their own stimuli and computer configuration.


2010 ◽  
Vol 439-440 ◽  
pp. 1281-1286 ◽  
Author(s):  
Peng Fei Liu ◽  
Shou Bin Dong

Focused on the complexity of the parallel job scheduling on heterogeneous Grid, the paper proposes a multi-objective optimization based scheduling algorithm. The algorithm first splits the parallel job up into a series of independent processes with constraints, and then adopts particles to represent the mapping of job-resource. Multi-objective PSO is employed to simultaneously optimize the scheduling objectives of throughput and average turnaround time. Experimental result indicates that the proposed approach is effective while dealing with large scale parallel jobs scheduling on heterogeneous Grid and outperforms other conventional algorithms.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740050 ◽  
Author(s):  
Wenzheng Zhai ◽  
Yue-Li Hu ◽  
Feng Ran

Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.


2004 ◽  
Vol 14 (02) ◽  
pp. 255-270 ◽  
Author(s):  
JEMAL H. ABAWAJY

Cluster computing has come to prominence as a cost-effective parallel processing tool for solving many complex computational problems. In this paper, we propose a new timesharing opportunistic scheduling policy to support remote batch job executions over networked clusters to be used in conjunction with the Condor Up-Down scheduling algorithm. We show that timesharing approaches can be used in an opportunistic setting to improve both mean job slowdowns and mean response times with little or no throughput reduction. We also show that the proposed algorithm achieves significant improvement in job response time and slowdown as compared to exiting approaches and some recently proposed new approaches.


2020 ◽  
Author(s):  
David Bridges ◽  
Alain Pitiot ◽  
Michael R. MacAskill ◽  
Jonathan Westley Peirce

Many researchers in the behavioral sciences depend on research software that presents stimuli, and records response times, with sub-millisecond precision. There are a large number of software packages with which to conduct these behavioural experiments and measure response times and performance of participants. Very little information is available, however, on what timing performance they achieve in practice. Here we report a wide-ranging study looking at the precision and accuracy of visual and auditory stimulus timing and response times, measured with a Black Box Toolkit. We compared a range of popular packages: PsychoPy, E-Prime®, NBS Presentation®, Psychophysics Toolbox, OpenSesame, Expyriment, Gorilla, jsPsych, Lab.js and Testable. Where possible, the packages were tested on Windows, MacOS, and Ubuntu, and in a range of browsers for the online studies, to try to identify common patterns in performance. Among the lab-based experiments, Psychtoolbox, PsychoPy, Presentation and E-Prime provided the best timing, all with mean precision under 1 millisecond across the visual, audio and response measures. OpenSesame had slightly less precision across the board, but most notably in audio stimuli and Expyriment had rather poor precision. Across operating systems, the pattern was that precision was generally very slightly better under Ubuntu than Windows, and that Mac OS was the worst, at least for visual stimuli, for all packages. Online studies did not deliver the same level of precision as lab-based systems, with slightly more variability in all measurements. That said, PsychoPy and Gorilla, broadly the best performers, were achieving very close to millisecond precision on a number of browser configurations. For response times (using a high-performance button box), most of the packages achieved precision at least under 10 ms in all browsers, with PsychoPy achieving a precision under 3.5 ms in all. There was considerable variability between operating systems and browsers, especially in audio-visual synchrony which is the least precise aspect of the browser-based experiments. Nonetheless, the data indicate that online methods can be suitable for a wide range of studies, with due thought about the sources of variability that result.The results, from over 110,000 trials, highlight the wide range of timing qualities that can occur even in these dedicated software packages for the task. We stress the importance of scientists making their own timing validation measurements for their own stimuli and computer configuration.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 950 ◽  
Author(s):  
Yue Jiang ◽  
Hongyi Chen ◽  
Xiangrui Yang ◽  
Zhigang Sun ◽  
Wei Quan

The southbound protocol of Software Defined Networking (SDN) enables the direct access into SDN switches which accelerates the innovation and deployment of network functions in the data plane. Correspondingly, SDN switches that support the new southbound protocol and provide high performance are developed continuously. Therefore, there is an increasing need for testing tools to test such equipment in terms of protocol correctness and performance. However, existing tools have deficiencies in flexibility for verifying the novel southbound protocol, time synchronization between the two planes, and supporting more testing functions with less resource consumption. In this paper, we present the concept of CPU & FPGA co-design Tester (CFT) for SDN switches, which provides flexible APIs for test cases of the control plane and high performance for testing functions in the data plane. We put forward an efficient scheduling algorithm to integrate the control plane and the data plane into a single pipeline which fundamentally solves the time asynchronization between these two planes. Due to the reconfigurable feature of our proposed pipeline, it becomes possible to perform different testing functions in one pipeline. Through a prototype implementation and evaluation, we reveal that the proposed CFT can verify the protocol correctness of SDN switches on the control plane while providing no-worse performance for tests on the data plane compared with commercial testers.


Sign in / Sign up

Export Citation Format

Share Document