scholarly journals Numerical Simulation of the Evacuation Process in a Tunnel during Contraflow Traffic Operations

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2392
Author(s):  
Razieh Khaksari ◽  
Zambri Harun ◽  
Les Fielding ◽  
John Aldridge

The purpose of this numerical research is to assess the evacuation process in a tunnel under the contraflow condition. Numerical simulations utilizing FDS+Evac codes associated with a fire dynamic simulator (FDS) model simulating a fire scenario are used to simulate evacuation and to predict the impact of a 100 MW fire scenario on the occupants inside the tunnel. Traffic and passenger conditions are based on real data from a tunnel in the UK. Two fire loads, 100 MW and 5 MW, are studied to represent an HGV and a passenger car fire. The 100 MW fire source, caused by an unexpected heavy good vehicle (HGV) catching fire, is located in the middle of the tunnel and at 20% of tunnel length to study the effect of fire source location on the usage of emergency exits and tenability thresholds. The dimensions and the inclination angle of the existing roadway tunnel are 1836 m (L) × 7.3 m (W) × 5 m (H) and 4%, respectively. It should be noted that the 4% inclination of the tunnel causes asymmetry propagation of smokes thus the visibility of the downstream and upstream from the fire behave differently. The maximum needed time to evacuate using all egress, the amount of fractional effective dose and visibility at the human’s height are analyzed. Simulation results indicate that when a realistic worst-case fire scenario is modeled, all evacuees can survive before the combustion gases and heat influence their survivability.

2020 ◽  
Author(s):  
Daniel Evans ◽  
John Quinton ◽  
Andrew Tye ◽  
Angel Rodes ◽  
Jessica Davies ◽  
...  

<p>Soils deliver multiple ecosystem services and their long-term sustainability is fundamentally determined by the rates at which they form and erode. Our knowledge and understanding of soil formation is not commensurate with that of soil erosion, but developments in cosmogenic radionuclide analysis have enabled soil scientists to more accurately constrain the rates at which soils form from bedrock. To date, all three major rock types – igneous, sedimentary and metamorphic lithologies – have been examined in such work. Soil formation rates have been measured and compared between these rock types but the impact of rock characteristics such as mineralogy or porosity on soil formation rates has seldom been explored. In this UK-based study, we addressed this knowledge gap by using cosmogenic radionuclide analysis to investigate whether the lithological variability of sandstone governs pedogenesis. Soil formation rates from two arable hillslopes underlain by different types of arenite sandstone were calculated. Rates ranged from 0.090 to 0.193 mm yr<sup>-1</sup> and although the sandstones differed in porosity, no significant differences in soil formation rates were found between them. On the contrary, these rates significantly differed from those measured at two other sandstone-based sites in the UK, and with the rates compiled in global inventory of cosmogenic studies on sandstone-based soils. We suggest that this is due to the absence of matrix and the greater porosities exhibited at our UK sites in comparison to the matrix-abundant, less porous wackes that have been studied previously. We then used soil formation rates to calculate first-order soil lifespans for both of our hillslopes. In a worst case scenario, the lifespan of the A horizon at one of our sites could be eroded in less than 40 years, with bedrock exposure occurring in less than 190 years.  This underlines the urgency required in ameliorating rates of soil erosion. However, we also demonstrate the importance of measuring soil erosion and formation in parallel, at the site of interest, rather than calculating a mean rate from the literature, as we demonstrate soil formation rates can vary significantly among variants of the same rock type.</p><p> </p>


Author(s):  
Patricia Seevam ◽  
Julia Race ◽  
Martin Downie ◽  
Julian Barnett ◽  
Russell Cooper

Climate change has been attributed to green house gases, with carbon dioxide (CO2) being the main contributor. Sixty to seventy percent of carbon dioxide emissions originate from fossil fuel power plants. Power companies in the UK, along with oil and gas field operators, are proposing to capture this anthropogenic CO2 and either store it in depleted reservoirs or saline aquifers (carbon capture and storage, CCS), or use it for ‘Enhanced Oil Recovery’ (EOR) in depleting oil and gas fields. This would involve extensive onshore and offshore pipeline systems. The decline of oil and gas production of reservoirs beyond economic feasibility will require the decommissioning onshore and offshore facilities post-production. This creates a possible opportunity for using existing pipeline infrastructure. Conversions of pipelines from natural gas service to CO2 service for EOR have been done in the United States. However, the differing sources of CO2 and the differing requirements for EOR and CCS play a significant part in allowing the re-use of existing infrastructure. The effect of compositions, the phase of transportation, the original pipeline specifications, and also the pipeline route require major studies prior to allowing re-use. This paper will first review the requirements for specifying the purity of the CO2 for CCS and to highlight the implications that the presence of impurities and the current water specifications for pipelines has on the phase diagram and the associated physical properties of the CO2 stream. A ‘best’ and ‘worst’ case impurity specification will be identified. Then an analysis on the impact and subsequent validation, of equations of state based on available experimental data on the phase modelling of anthropogenic CO2 is presented. A case study involving an existing 300km gas pipeline in the National Transmission System (NTS) in the UK is then modelled, to demonstrate the feasibility of using this pipeline to transport anthropogenic CO2. The various issues involved for the selected ‘best’ and ‘worst’ case specification are also covered. This is then followed by an investigation of the options for transport in the ‘gas’ phase and ‘supercritical’ phases, and also identifying the limitations on re-using pipeline infrastructure for CCS.


2021 ◽  
Vol 376 (1829) ◽  
pp. 20200264
Author(s):  
Lorenzo Pellis ◽  
Francesca Scarabel ◽  
Helena B. Stage ◽  
Christopher E. Overton ◽  
Lauren H. K. Chappell ◽  
...  

Early assessments of the growth rate of COVID-19 were subject to significant uncertainty, as expected with limited data and difficulties in case ascertainment, but as cases were recorded in multiple countries, more robust inferences could be made. Using multiple countries, data streams and methods, we estimated that, when unconstrained, European COVID-19 confirmed cases doubled on average every 3 days (range 2.2–4.3 days) and Italian hospital and intensive care unit admissions every 2–3 days; values that are significantly lower than the 5–7 days dominating the early published literature. Furthermore, we showed that the impact of physical distancing interventions was typically not seen until at least 9 days after implementation, during which time confirmed cases could grow eightfold. We argue that such temporal patterns are more critical than precise estimates of the time-insensitive basic reproduction number R 0 for initiating interventions, and that the combination of fast growth and long detection delays explains the struggle in countries' outbreak response better than large values of R 0 alone. One year on from first reporting these results, reproduction numbers continue to dominate the media and public discourse, but robust estimates of unconstrained growth remain essential for planning worst-case scenarios, and detection delays are still key in informing the relaxation and re-implementation of interventions. This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.


Author(s):  
C. Claire Thomson

This chapter traces the early history of state-sponsored informational filmmaking in Denmark, emphasising its organisation as a ‘cooperative’ of organisations and government agencies. After an account of the establishment and early development of the agency Dansk Kulturfilm in the 1930s, the chapter considers two of its earliest productions, both process films documenting the manufacture of bricks and meat products. The broader context of documentary in Denmark is fleshed out with an account of the production and reception of Poul Henningsen’s seminal film Danmark (1935), and the international context is accounted for with an overview of the development of state-supported filmmaking in the UK, Italy and Germany. Developments in the funding and output of Dansk Kulturfilm up to World War II are outlined, followed by an account of the impact of the German Occupation of Denmark on domestic informational film. The establishment of the Danish Government Film Committee or Ministeriernes Filmudvalg kick-started aprofessionalisation of state-sponsored filmmaking, and two wartime public information films are briefly analysed as examples of its early output. The chapter concludes with an account of the relations between the Danish Resistance and an emerging generation of documentarists.


Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


Sign in / Sign up

Export Citation Format

Share Document