scholarly journals An Angle-Compensating, Complex-Coefficient PI Controller Used for Decoupling Control of a Permanent-Magnet Synchronous Motor

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Jing Guo ◽  
Tao Fan ◽  
Qi Li ◽  
Xuhui Wen

An asymmetric, cross-coupling effect, as well as digital control delays, in a permanent-magnet synchronous motor (PMSM) will deteriorate its current-control performance in the high-speed range, especially for electric motors used in electric vehicles (EVs) with features such as high-power density and a low carrier/modulation frequency ratio. In this paper, an angle-compensating, complex-coefficient, proportional-integrator (ACCC-PI) controller is proposed, which aims to provide an excellent decoupling performance even with considerable digital control delay. Firstly, the current open and closed loop complex-coefficient transfer functions were established in the synchronous rotation coordinate system. The proposed method, along with existing ones, were then evaluated and theoretically compared. On this basis, the parameter-tuning method of the ACCC-PI controller was presented. Finally, simulation and experimental results proved the correctness of the theoretical analysis and the proposed method.

Author(s):  
Ifeanyi Chinaeke-Ogbuka ◽  
Augustine Ajibo ◽  
Kenneth Odo ◽  
Uche Ogbuefi ◽  
Muncho Mbunwe ◽  
...  

A robust high-speed sliding mode control (SMC) of three phase permanent magnet synchronous motor (PMSM) is presented. The SMC served for inner speed control while a simplified hysteresis current control (HCC) scheme was used in the outer current control to generate gating signals for the inverter switches. The present research leverages on the ability of SMC to directly access system speed error which it attempts driving to zero by cancelling modelling uncertainties and disturbances. Performance comparison was done for the SMC model and an existing model having classical PI controller. With the initial positive speed command of 200 rpm at 5 Nm constant loading, rotor speed with SMC neatly settled to the reference speed at 0.085 seconds without overshoot while the rotor speed of the model with PI controller settled at 0.217 seconds after overshoot. This translates to 155.3% speed enhancement. Similar superior speed performance of the SMC was also observed during recovering from sudden speed reversal. While the SMC model recovered and settled to the reference speed of -200 rpm at 0.369 seconds, the model with PI controller settled at 0.482 seconds. From the results, it can be seen that SMC demonstared superiority over the conventioanl PI controller for complex drives systems.


2012 ◽  
Vol 546-547 ◽  
pp. 313-319
Author(s):  
Liang Liang Mao ◽  
Xu Dong Wang ◽  
Mei Lan Zhou ◽  
Yan Ming Zhang ◽  
Jin Fa Liu

Interior permanent magnet synchronous motors can be applied to applications requiring wide-speed operation by means of flux-weakening control. While due to the fixed capacity of PWM inverter, the high speed operation range of interior permanent magnet synchronous motor (IPMSM) is mainly limited by the saturation of current regulator. In constant power region, in stead of the available voltage that controls the armature current vector, the current vector sometimes becomes uncontrollable in transient operations because of the current regulator saturation. In order to extend its operation range, the current vector control algorithm of IPM motor over the base speed operation is proposed in this paper which includes the decoupling current control and the voltage command compensation. Also this paper introduces a judgment method to monitor if the current regulator has gone into saturation or not. Finally on the basis of simulation results, the effectiveness of this control strategy is further confirmed by real drive tests.


Sign in / Sign up

Export Citation Format

Share Document