scholarly journals Dark Information in Black Hole with λφ Fluid

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Yu-Xiao Liu ◽  
Yu-Han Ma ◽  
Yong-Qiang Wang ◽  
Shao-Wen Wei ◽  
Chang-Pu Sun

It has been shown that the nonthermal spectrum of Hawking radiation will lead to information-carrying correlations between emitted particles in the radiation. The mutual information carried by such correlations can not be locally observed and hence is dark. With dark information, the black hole information is conserved. In this paper, we look for the spherically symmetric black hole solution in a λφ fluid model and investigate the radiation spectrum and dark information of the black hole. The spacetime structure of this black hole is similar to that of the Schwarzschild one, while its horizon radius is decreased by the λφ fluid. By using the statistical mechanical method, the nonthermal radiation spectrum is calculated. This radiation spectrum is very different from the Schwarzschild case at its last stage because of the effect of the λφ fluid. The λφ fluid reduces the lifetime of the black hole, but increases the dark information of the Hawking radiation.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ge-Rui Chen ◽  
Yong-Chang Huang

Considering energy conservation and the back reaction of radiating particles to the spacetime, we investigate the massive Dirac particles' Hawking radiation from a general static Riemann black hole using improved Damour-Ruffini method. A direct consequence is that the radiation spectrum is not strictly thermal. The correction to the thermal spectrum is consistent with an underlying unitary quantum theory and this may have profound implications for the black hole information loss paradox.


2004 ◽  
Vol 13 (10) ◽  
pp. 2351-2354 ◽  
Author(s):  
MAULIK PARIKH

Hawking radiation is often intuitively visualized as particles that have tunneled across the horizon. Yet, at first sight, it is not apparent where the barrier is. Here I show that the barrier depends on the tunneling particle itself. The key is to implement energy conservation, so that the black hole contracts during the process of radiation. A direct consequence is that the radiation spectrum cannot be strictly thermal. The correction to the thermal spectrum is of precisely the form that one would expect from an underlying unitary quantum theory. This may have profound implications for the black hole information puzzle.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


Author(s):  
Cheng-Yong Zhang ◽  
Peng-Cheng Li ◽  
Minyong Guo

AbstractA novel 4D Einstein–Gauss–Bonnet gravity was recently formulated by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. Although this theory may run into trouble at the level of action or equations of motion, the spherically symmetric black hole solution, which can be successfully reproduced in those consistent theories of 4D EGB gravity, is still meaningful and worthy of study. In this paper, we investigate Hawking radiation in the spacetime containing such a de Sitter black hole. Both the greybody factor and the power spectra of the Hawking radiation of the massless scalar are studied numerically for the full range of various parameters, including the GB coupling constant $$\alpha $$ α , the cosmological constant $$\Lambda $$ Λ and the coupling constant related to the scalar filed $$\xi $$ ξ . In particular, we find a negative $$\alpha $$ α leads to a larger greybody factor than that of a $$\alpha \ge 0$$ α ≥ 0 . While, for the power spectra of the Hawking radiation the situation is quite the opposite. The reason is that the temperature of the black hole would be very high when $$\alpha <0$$ α < 0 . Actually, we observe that the temperature would be arbitrarily high when $$\alpha $$ α approaches to the lower bound.


2020 ◽  
Vol 29 (11) ◽  
pp. 17-25
Author(s):  
Sang-Heon YI ◽  
Dong-han YEOM

In this article, we discuss the information loss problem of black holes and critically review candidate resolutions of the problem. As a black hole evaporates via Hawking radiation, it seems to lose original quantum information; this indicates that the unitarity of time evolution in quantum mechanics and the fundamental predictability of physics are lost. We categorized candidate resolutions by asking (1) where information is and (2) which principle of physics is changed. We also briefly comment on the recent progress in the string theory community. Finally, we present several remarks for future perspectives.


2012 ◽  
Vol 538-541 ◽  
pp. 2169-2174
Author(s):  
Qing Quan Jiang

In this paper, when considering the conservation of energy, electric charge and angular momentum, we develop the Parikh-Wilczek’s quantum tunneling method to study the Hawking radiation of charged particles via tunneling from the event horizon of Kim black hole. The result shows the exact radiation spectrum deviates from the precisely thermal one, but satisfies an underlying unitary theory, which provides a possible solution to the information loss during the black hole evaporation.


2009 ◽  
Vol 51 (1) ◽  
pp. 187-189 ◽  
Author(s):  
Zeng Xiao-Xiong ◽  
Han Yi-Wen ◽  
Yang Shu-Zheng

2019 ◽  
Vol 16 (10) ◽  
pp. 1950156
Author(s):  
Carlos Castro Perelman

After a brief review of the thermal relativistic corrections to the Schwarzschild black hole entropy, it is shown how the Stefan–Boltzman law furnishes large modifications to the evaporation times of Planck-size mini-black holes, and which might furnish important clues to the nature of dark matter and dark energy since one of the novel consequences of thermal relativity is that black holes do not completely evaporate but leave a Planck size remnant. Equating the expression for the modified entropy (due to thermal relativity corrections) with Wald’s entropy should, in principle, determine the functional form of the modified gravitational Lagrangian [Formula: see text]. We proceed to derive the generalized uncertainty relation which corresponds to the effective temperature [Formula: see text] associated with thermal relativity and given in terms of the Hawking ([Formula: see text]) and Planck ([Formula: see text]) temperature, respectively. Such modified uncertainty relation agrees with the one provided by string theory up to first order in the expansion in powers of [Formula: see text]. Both lead to a minimal length (Planck size) uncertainty. Finally, an explicit analytical expression is found for the modifications to the purely thermal spectrum of Hawking radiation which could cast some light into the resolution of the black hole information paradox.


Sign in / Sign up

Export Citation Format

Share Document