scholarly journals A Hybrid Shuffled Frog Leaping Algorithm and Its Performance Assessment in Multi-Dimensional Symmetric Function

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Fei Li ◽  
Wentai Guo ◽  
Xiaotong Deng ◽  
Jiamei Wang ◽  
Liangquan Ge ◽  
...  

Ensemble learning of swarm intelligence evolutionary algorithm of artificial neural network (ANN) is one of the core research directions in the field of artificial intelligence (AI). As a representative member of swarm intelligence evolutionary algorithm, shuffled frog leaping algorithm (SFLA) has the advantages of simple structure, easy implementation, short operation time, and strong global optimization ability. However, SFLA is susceptible to fall into local optimas in the face of complex and multi-dimensional symmetric function optimization, which leads to the decline of convergence accuracy. This paper proposes an improved shuffled frog leaping algorithm of threshold oscillation based on simulated annealing (SA-TO-SFLA). In this algorithm, the threshold oscillation strategy and simulated annealing strategy are introduced into the SFLA, which makes the local search behavior more diversified and the ability to escape from the local optimas stronger. By using multi-dimensional symmetric function such as drop-wave function, Schaffer function N.2, Rastrigin function, and Griewank function, two groups (i: SFLA, SA-SFLA, TO-SFLA, and SA-TO-SFLA; ii: SFLA, ISFLA, MSFLA, DSFLA, and SA-TO-SFLA) of comparative experiments are designed to analyze the convergence accuracy and convergence time. The results show that the threshold oscillation strategy has strong robustness. Moreover, compared with SFLA, the convergence accuracy of SA-TO-SFLA algorithm is significantly improved, and the median of convergence time is greatly reduced as a whole. The convergence accuracy of SFLA algorithm on these four test functions are 90%, 100%, 78%, and 92.5%, respectively, and the median of convergence time is 63.67 s, 59.71 s, 12.93 s, and 8.74 s, respectively; The convergence accuracy of SA-TO-SFLA algorithm on these four test functions is 99%, 100%, 100%, and 97.5%, respectively, and the median of convergence time is 48.64 s, 32.07 s, 24.06 s, and 3.04 s, respectively.

2013 ◽  
Vol 711 ◽  
pp. 659-664
Author(s):  
Li Shan Li

In the article, three kinds of swarm intelligence optimization algorithm are discussed including the ant colony optimization (ACO) algorithm, the particle swarm optimization (PSO) algorithm and the shuffled frog leaping algorithm (SFLA). The principle, development and application of each algorithm is introduced. Finally, an example of TSP is used to test the performance of ACO.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1903
Author(s):  
Edwards Cerqueira de Castro ◽  
Evandro Ottoni Teatini Salles ◽  
Patrick Marques Ciarelli

This work proposes a new approach to improve swarm intelligence algorithms for dynamic optimization problems by promoting a balance between the transfer of knowledge and the diversity of particles. The proposed method was designed to be applied to the problem of video tracking targets in environments with almost constant lighting. This approach also delimits the solution space for a more efficient search. A robust version to outliers of the double exponential smoothing (DES) model is used to predict the target position in the frame delimiting the solution space in a more promising region for target tracking. To assess the quality of the proposed approach, an appropriate tracker for a discrete solution space was implemented using the meta-heuristic Shuffled Frog Leaping Algorithm (SFLA) adapted to dynamic optimization problems, named the Dynamic Shuffled Frog Leaping Algorithm (DSFLA). The DSFLA was compared with other classic and current trackers whose algorithms are based on swarm intelligence. The trackers were compared in terms of the average processing time per frame and the area under curve of the success rate per Pascal metric. For the experiment, we used a random sample of videos obtained from the public Hanyang visual tracker benchmark. The experimental results suggest that the DSFLA has an efficient processing time and higher quality of tracking compared with the other competing trackers analyzed in this work. The success rate of the DSFLA tracker is about 7.2 to 76.6% higher on average when comparing the success rate of its competitors. The average processing time per frame is about at least 10% faster than competing trackers, except one that was about 26% faster than the DSFLA tracker. The results also show that the predictions of the robust DES model are quite accurate.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Haorui Liu ◽  
Fengyan Yi ◽  
Heli Yang

The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion.


Sign in / Sign up

Export Citation Format

Share Document