scholarly journals Modified One-Sided EWMA Charts without- and with Variable Sampling Intervals for Monitoring a Normal Process

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 159
Author(s):  
Xuelong Hu ◽  
Suying Zhang ◽  
Guan Sun ◽  
Jianlan Zhong ◽  
Shu Wu

Much research has been conducted on two-sided Exponentially Weighted Moving Average (EWMA) control charts, while less work has been devoted to the one-sided EWMA charts. Traditional one-sided EWMA charts involve resetting the EWMA statistic to the target whenever it falls below or above the target, or truncating the observations above or below the target and further applying the EWMA statistic to the truncated samples. In order to further improve the performance of traditional one-sided EWMA mean (X¯) charts, this paper studies the performance of the Modified One-sided EWMA (MOEWMA) X¯ charts to monitor a normally distributed process. The Monte-Carlo simulation method is used to obtain the zero- and steady-state Run Length (RL) properties of the proposed control charts. Through extensive simulations and comparisons with other charts, it is shown that the proposed MOEWMA X¯ charts compare favorably with some existing competing charts. Moreover, by attaching the variable sampling intervals (VSI) feature to the MOEWMA X¯ charts, it is shown that the VSI MOEWMA charts outperform the corresponding charts without the VSI feature. Finally, a real data example from manufacturing process shows the implementation of the proposed one-sided charts.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Wang ◽  
Xuelong Hu ◽  
Xiaojian Zhou ◽  
Yulong Qiao ◽  
Shu Wu

In statistical process control (SPC), t charts play a vital role in the monitoring of the process mean, especially when the process variance is unknown. In this paper, two separate upper-sided and lower-sided exponentially weighted moving average (EWMA) t charts are first proposed and the Monte Carlo simulation method is used to obtain their run length (RL) properties. Compared with the traditional one-sided EWMA t charts and several run rules t charts, the proposed charts are proven to have better performance than these competing charts. In addition, by adding the variable sampling interval (VSI) feature to the proposed charts, the new VSI one-sided EWMA t charts are shown to detect different shift sizes in the process more efficient than the chart without VSI feature. Finally, an example of a milk filling process illustrates the use of the charts.


2016 ◽  
Vol 40 (1) ◽  
pp. 318-330 ◽  
Author(s):  
Amirhossein Amiri ◽  
Reza Ghashghaei ◽  
Mohammad Reza Maleki

In this paper, we investigate the misleading effect of measurement errors on simultaneous monitoring of the multivariate process mean and variability. For this purpose, we incorporate the measurement errors into a hybrid method based on the generalized likelihood ratio (GLR) and exponentially weighted moving average (EWMA) control charts. After that, we propose four remedial methods to decrease the effects of measurement errors on the performance of the monitoring procedure. The performance of the monitoring procedure as well as the proposed remedial methods is investigated through extensive simulation studies and a real data example.


Author(s):  
Kim Phuc Tran ◽  
Philippe Castagliola ◽  
Thi Hien Nguyen ◽  
Anne Cuzol

In the literature, median type control charts have been widely investigated as easy and efficient means to monitor the process mean when observations are from a normal distribution. In this work, a Variable Sampling Interval (VSI) Exponentially Weighted Moving Average (EWMA) median control chart is proposed and studied. The Markov chains are used to calculate the average run length to signal (ARL). A performance comparison with the original EWMA median control chart is made. The numerical results show that the proposed chart is considerably more effective as it is faster in detecting process shifts. Finally, the implementation of the proposed chart is illustrated with an example in food production process.


Sign in / Sign up

Export Citation Format

Share Document