scholarly journals The CMS Magnetic Field Measuring and Monitoring Systems

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Vyacheslav Klyukhin ◽  
Austin Ball ◽  
Felix Bergsma ◽  
Henk Boterenbrood ◽  
Benoit Curé ◽  
...  

This review article describes the performance of the magnetic field measuring and monitoring systems for the Compact Muon Solenoid (CMS) detector. To cross-check the magnetic flux distribution obtained with the CMS magnet model, four systems for measuring the magnetic flux density in the detector volume were used. The magnetic induction inside the 6 m diameter superconducting solenoid was measured and is currently monitored by four nuclear magnetic resonance (NMR) probes installed using special tubes at a radius of 2.9148 m outside the barrel hadron calorimeter at ±0.006 m from the coil median XY-plane. Two more NRM probes were installed at the faces of the tracking system at Z-coordinates of −2.835 and +2.831 m and a radius of 0.651 m from the solenoid axis. The field inside the superconducting solenoid was precisely measured in 2006 in a cylindrical volume of 3.448 m in diameter and 7 m in length using ten three-dimensional (3D) B-sensors based on the Hall effect (Hall probes). These B-sensors were installed on each of the two propeller arms of an automated field-mapping machine. In addition to these measurement systems, a system for monitoring the magnetic field during the CMS detector operation has been developed. Inside the solenoid in the horizontal plane, four 3D B-sensors were installed at the faces of the tracking detector at distances X = ±0.959 m and Z-coordinates of −2.899 and +2.895 m. Twelve 3D B-sensors were installed on the surfaces of the flux-return yoke nose disks. Seventy 3D B-sensors were installed in the air gaps of the CMS magnet yoke in 11 XY-planes of the azimuthal sector at 270°. A specially developed flux loop technique was used for the most complex measurements of the magnetic flux density inside the steel blocks of the CMS magnet yoke. The flux loops are installed in 22 sections of the flux-return yoke blocks in grooves of 30 mm wide and 12–13 mm deep and consist of 7–10 turns of 45 wire flat ribbon cable. The areas enclosed by these coils varied from 0.3 to 1.59 m2 in the blocks of the barrel wheels and from 0.5 to 1.12 m2 in the blocks of the yoke endcap disks. The development of these systems and the results of the magnetic flux density measurements across the CMS magnet are presented and discussed in this review article.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Author(s):  
Ping-Hsun Lee ◽  
Jen-Yuan (James) Chang

Abstract In this paper we proposed a platform for measuring shear force of magnetorheological (MR) fluid by which the relationship of yield stress and magnetic flux density of specific material can be determined. The device consisted of a rotatable center tube in a frame body and the magnetic field was provided by two blocks of permanent magnets placed oppositely outside the frame body. The magnitude and direction of the magnetic field were manipulated by changing the distance of the two permanent magnets from the frame body and rotating the center tube, respectively. For determining the magnetic field of the device, we adopted an effective method by fitting the FEM (finite element method) result to the measured one and then rebuilt the absent components to approximate the magnetic field, which was hardly to be measured simultaneously as different device setup were required. With the proposed platform and analytical methods, the drawing shear force and the corresponding yield stress contributed by MR fluid could be evaluated in respect to the magnitude and direction of given magnetic flux density with acceptable accuracy for specific designing purposes without a large, complex, and expensive instrument.


Author(s):  
Alireza Hekmati ◽  
Siamak Arzanpour

This paper presents a mathematical modeling of a modified voice coil generator, which consists of a moving coil within a fixed magnetic circuit. The simulation has been done with Comsol Multiphysics software, which is a powerful tool to demonstrate the pattern of magnetic field and calculate the induced current in the coil. In our simulations, the magnetic circuit consists of the magnetic conductor and the air gap. In this analysis, the magnetic flux density and the magnetic field intensity are calculated. Moreover, through calculation of the total reluctance of the magnetic circuit and employing the ohm’s law for magnetic circuits, the effect of the length and cross section of the total circuit on the magnetic flux are investigated. Finally, a pattern for the magnetic flux density are demonstrated and the simulation result indicates that the magnetic field is well concentrated on the coil area, therefore this prototype can capture and convert most of the kinetic energy to electricity. A prototype has been fabricated and tested on the shaker. The experimental results indicate that this setup is able to produce the maximum voltage of 0.326 V and the peak power equal to 2.605 mW in 35 Hz frequency and 1 mm peak to peak amplitude.


2019 ◽  
Vol 32 (4) ◽  
pp. 555-569
Author(s):  
Slavko Vujevic ◽  
Tonci Modric

There has been apprehension about the possible adverse health effects resulting from exposure to power frequency magnetic field, especially in the overhead power lines vicinity. Research work on the biological effects of magnetic field has been substantial in recent decades. Various international regulations and safety guidelines, aimed at the protection of human beings, have been issued. Numerous measurements are performed and different numerical algorithms for computation of the magnetic field, based on the Biot- Savart law, are developed. In this paper, a previously developed 3D quasistatic numerical algorithm for computation of the magnetic field (i.e. magnetic flux density) produced by overhead power lines has been improved in such a way that cylindrical segments of passive conductors are also taken into account. These segments of passive conductors form the conductive passive contours, which can be natural or equivalent, and they substitute conductive passive parts of the overhead power lines and towers. Although, their influence on the magnetic flux density distribution and on the total effective values of magnetic flux density is small, it is quantified in a numerical example, based on a theoretical background that was developed and presented in this paper.


Author(s):  
Ahmed El-Shahat ◽  
Ashraf. M ◽  
Waleed. A ◽  
K. Sayed

Introduction: Early recognition of stroke with its two types Ischemic and Hemorrhagic, is one of the most crucial research points, commonly used methods are CT- (computerized tomography), and MRI- (Magnetic resonance imaging). These techniques cause a delay in the detection of the condition, which causes permanent disability. The main reason behind the fatal consequences of stroke is the delay of detection. Therefore, this research paper aims to early detection of the type of stroke without delay until the appropriate diagnosis of each type is made, and then the appropriate treatment without delay. Method: Using a non-invasive and fast technique to determine the stroke type by wave, we simulate and design a vessel containing a liquid as a laminar flow with the same density and velocity of blood, and it was surrounded by a Homogenized multi-turn coil consisting of (n) turns to represent the magnetic field, using specific frequency (HZ) with Electrical field in coil current (A) to see the changing in magnetic flux density (MFD), Depending on the changes in MFD, the flow of blood in laminar flow can be affected by clotting (Ischemic) or Hemorrhagic (cutting) in our vessel designed. We have built three different scenarios to apply the technique which are: First: Normal Scenario (where the blood in vessel has no problem), second: clotting (ischemic, where the vessel blocked in specific three position) and Third: Cutting (Hemorrhagic, where the vessel cut in certain nine positions). Results: This paper presents-through our own design-the studying of applying the electromagnetic waves on blood inside the vessel to detect the stroke type in our three scenarios (normal, ischemic three positions or hemorrhagic nine positions), Studying the magnetic field and laminar flow. This study covered in three areas. First: coil geometry analysis, Second: stationary, and Third: frequency domain. through the changes in Magnetic Flux Density -MFD- waves. The results were promising and distinct for distinguishing between the three scenarios which are normal, ischemic (3 positions) and hemorrhagic (9 positions) the results of MFD are: 0.09 to 3.3*10^-3, 0.08 to 3.15*10^-4, 0.15 to 6.2*10^-3 respectively.


2019 ◽  
Vol 71 (10) ◽  
pp. 1200-1205
Author(s):  
Mustafa Kadıoğlu ◽  
Ertuğrul Durak

Purpose The purpose of this study was to examine the effect of the magnetic field to the friction coefficient in the rolling element bearings which exists in electric motors. Design/methodology/approach To achieve this, the test rig was modified to adjust the density of the magnetic flux applied to the rolling ball element bearing. Experiments were carried out in the magnetic field from 0 to 7.5 mTesla at magnetic flux density range from 15, 40 and 65 N constant loads. Also, its rotary speed selected as 100, 200, 400, 800 to 1200 rpm, respectively. Findings In the majority of the experiments, it was observed that the magnetic field affected the friction coefficient. This influence reduced the friction coefficient in some experimental conditions and increased in some of them. Originality/value In the literature, there are very few studies on the effect of magnetic flux density to the friction coefficient in these rolling element bearings. It has become clear that more studies have been conducted on the effects of the magnetic field and/or electrical current on bearing damages and failures. This aspect is a study with specificity.


2014 ◽  
Vol 1017 ◽  
pp. 806-811
Author(s):  
Hideki Takezawa ◽  
Nobuhiro Yokote ◽  
Naotake Mohri

The effect of changes in the magnetic field on the magnetic flux density during the electrical discharge machining (EDM) of a permanent magnet is reported. During EDM of the permanent magnet, a second magnet for the external magnetic field was set up, and the internal temperature and surface magnetic flux density on the opposite surface of the permanent magnet during machining were evaluated. It was found that even though the internal temperature of the magnet remained unchanged, the surface magnetic flux density changed when the external magnetic field was varied. In addition, the magnetic field generated by the magnet changed when a plate with high permeability was pressed onto the surface of the permanent magnet.


2012 ◽  
Vol 152-154 ◽  
pp. 952-957
Author(s):  
Hua Fang Huang ◽  
Yi Zhong Wang ◽  
Zong Guo Zhou ◽  
Yong Hua Chen

When the magnetic articulated needle is inserting, the magnetic field which can produce the magnetic force of variable direction is required in order to implement the magnetic navigation in three-dimensional space. The paper puts forward a method for generating three-dimensional magnetic field based on the rotaion and translation of multiple permanent magnets. In this method, multiple permanent magnets form a circumference array. Every permanent magnet can rotate around the spin axis of itself in the array plane and move along the direction vertical to the array plane. Thus, in the array center, a magnetic fied which can produce the uniform magnetic flux density is obtained. The direction of magnetic fied is controllable in three-dimensional space and the magnitude of magnetic flux density is variable in a certain range. The simulations by ANSYS verify the feasibility of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1408
Author(s):  
Chao Yang ◽  
Takafumi Sakai ◽  
Tsutomu Yamada ◽  
Zenglu Song ◽  
Yasushi Takemura

Magnetization reversal in a Wiegand wire induces a pulse voltage in the pickup coil around the wire, called the Wiegand pulse. The Wiegand sensor features the Wiegand wire and the pickup coil. The amplitude and width of the Wiegand pulse are independent of the frequency of the magnetic-field change. The pulse is generated by the Wiegand sensor, which facilitates the use of the Wiegand sensor as a power supply for equipment without batteries. In order to meet the power consumption requirements, it is necessary to maximize the energy of the pulse signal from the Wiegand sensor, without changing the external field conditions. The distributions of the magnetic field generated from the applied magnet in air and in the Wiegand wire were simulated before the experiments. Simulation predicted an increase in the magnetic flux density through the center of the Wiegand wire. This study determined that the magnetic flux density through the center of the Wiegand wire, the position of the pickup coil, and the angle between the Wiegand sensor and the magnetic induction line were the main factors that affected the energy of a Wiegand pulse. The relationship between these factors and the energy of the Wiegand pulse were obtained.


Sign in / Sign up

Export Citation Format

Share Document