scholarly journals Intelligent Interference Management in UAV-Based HetNets

Telecom ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 472-488
Author(s):  
Simran Singh ◽  
Abhaykumar Kumbhar ◽  
İsmail Güvenç ◽  
Mihail L. Sichitiu

Unmanned aerial vehicles (UAVs) can play a key role in meeting certain demands of cellular networks. UAVs can be used not only as user equipment (UE) in cellular networks but also as mobile base stations (BSs) wherein they can either augment conventional BSs by adapting their position to serve the changing traffic and connectivity demands or temporarily replace BSs that are damaged due to natural disasters. The flexibility of UAVs allows them to provide coverage to UEs in hot-spots, at cell-edges, in coverage holes, or regions with scarce cellular infrastructure. In this work, we study how UAV locations and other cellular parameters may be optimized in such scenarios to maximize the spectral efficiency (SE) of the network. We compare the performance of machine learning (ML) techniques with conventional optimization approaches. We found that, on an average, a double deep Q learning approach can achieve 93.46% of the optimal median SE and 95.83% of the optimal mean SE. A simple greedy approach, which tunes the parameters of each BS and UAV independently, performed very well in all the cases that we tested. These computationally efficient approaches can be utilized to enhance the network performance in existing cellular networks.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1960
Author(s):  
Azade Fotouhi ◽  
Ming Ding ◽  
Mahbub Hassan

In this paper, we address the application of the flying Drone Base Stations (DBS) in order to improve the network performance. Given the high degrees of freedom of a DBS, it can change its position and adapt its trajectory according to the users movements and the target environment. A two-hop communication model, between an end-user and a macrocell through a DBS, is studied in this work. We propose Q-learning and Deep Q-learning based solutions to optimize the drone’s trajectory. Simulation results show that, by employing our proposed models, the drone can autonomously fly and adapts its mobility according to the users’ movements. Additionally, the Deep Q-learning model outperforms the Q-learning model and can be applied in more complex environments.


Author(s):  
Akindele Segun Afolabi ◽  
Shehu Ahmed ◽  
Olubunmi Adewale Akinola

<span lang="EN-US">Due to the increased demand for scarce wireless bandwidth, it has become insufficient to serve the network user equipment using macrocell base stations only. Network densification through the addition of low power nodes (picocell) to conventional high power nodes addresses the bandwidth dearth issue, but unfortunately introduces unwanted interference into the network which causes a reduction in throughput. This paper developed a reinforcement learning model that assisted in coordinating interference in a heterogeneous network comprising macro-cell and pico-cell base stations. The learning mechanism was derived based on Q-learning, which consisted of agent, state, action, and reward. The base station was modeled as the agent, while the state represented the condition of the user equipment in terms of Signal to Interference Plus Noise Ratio. The action was represented by the transmission power level and the reward was given in terms of throughput. Simulation results showed that the proposed Q-learning scheme improved the performances of average user equipment throughput in the network. In particular, </span><span lang="EN-US">multi-agent systems with a normal learning rate increased the throughput of associated user equipment by a whooping 212.5% compared to a macrocell-only scheme.</span>


2019 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Jie Yang ◽  
Ziyu Pan ◽  
Lihong Guo

Due to the dense deployment of base stations (BSs) in heterogeneous cellular networks (HCNs), the energy efficiency (EE) of HCN has attracted the attention of academia and industry. Considering its mathematical tractability, the Poisson point process (PPP) has been employed to model HCNs and analyze their performance widely. The PPP falls short in modeling the effect of interference management techniques, which typically introduces some form of spatial mutual exclusion among BSs. In PPP, all the nodes are independent from each other. As such, PPP may not be suitable to model networks with interference management techniques, where there exists repulsion among the nodes. Considering this, we adopt the Matérn hard-core process (MHCP) instead of PPP, in which no two nodes can be closer than a repulsion radius from one another. In this paper, we study the coverage performance and EE of a two-tier HCN modelled by Matérn hard-core process (MHCP); we abbreviate this kind of two-tier HCN as MHCP-MHCP. We first derive the approximate expression of coverage probability of MHCP-MHCP by extending the approximate signal to interference ratio analysis based on the PPP (ASAPPP) method to multi-tier HCN. The concrete SIR gain of the MHCP model relative to the PPP model is derived through simulation and data fitting. On the basis of coverage analysis, we derive and formulate the EE of MHCP-MHCP network. Simulation results verify the correctness of our theoretical analysis and show the performance difference between the MHCP-MHCP and PPP modelled network.


2021 ◽  
Author(s):  
◽  
Lina Hao

<p>WiFi networks based on the IEEE 802.11 standard are widely used indoors or outdoors as simple and cost-effective wireless technology. However, the data connection is significantly disrupted when mobile stations (STAs) switch between access points (APs). Furthermore, high packet loss occurs during the switching period. Therefore, mobility is a critical issue that needs to be solved in WiFi networks.  In cellular networks, handover is used to keep ongoing data transfer when network clients switch between base stations. However, the handover algorithm is not supported in the 802.11 standard for WiFi networks. Self-Organizing Network (SON) functionality enables seamless handover in cellular networks, improving network performance. However, the SON functionality has not been fully researched in WiFi networks, especially for mobility management.  Motivated by the SON functionalities, a SON approach is proposed to automatically optimize the handover algorithms for WiFi networks. This approach focuses on the SON functionalities including self-configuration, self-optimization and self-healing using machine learning techniques to develop new algorithms for WiFi mobility management. The overall goal of this thesis is to optimize handover performance as well as enhance the network’s capabilities.</p>


2020 ◽  
Vol 9 (5) ◽  
pp. 1941-1949
Author(s):  
Achonu Adejo ◽  
Osbert Asaka ◽  
Habeeb Bello- Salau ◽  
Caroline Alenoghena

Cellular networks are expanding massively due to high data requirements from mobile devices. This has motivated base station densification as an essential requirement for the 5G network. The implication is obvious benefits in enhanced system capacity, but also increased challenges in terms of interference. One important interference management technique which has been widely adopted in cellular networks is frequency reuse. In this article, an analysis is presented based on network interference and energy expended by base stations in downlink communication when Soft frequency reuse (SFR) is deployed. A framework is presented that captures the bandwidth overlaps in SFR across base station assignments, computes the interference probabilities arising and derives new performance equations which are verified using simulations. Results show an improvement of over previous SFR implementations that do not consider the interference probabilities. Thus, a more in-depth and accurate modelling of SFR in 5G networks is achieved. Furthermore, the downlink power allocation is investigated as against other parameters like the center ratio and edge bandwidth. The result shows that signal-to-interference-noise ratio (SINR) and spectral efficiency give different performance under energy consideration. A framework is developed on how to tune a base station to achieve desired network performance in user SINR or cell spectral efficiency depending on the operator’s preference.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Zheng ◽  
Ling Gao ◽  
Hai Wang ◽  
Jinping Niu ◽  
Xiaoya Li ◽  
...  

The densification and expansion of heterogeneous cellular networks (HetNets) pose new challenges on interference management and reduction of energy consumption. The 3GPP has proposed enhanced intercell interference coordination (eICIC) by making a macrocell silent in almost blank subframes (ABSs) to mitigate interference for low power base stations (BSs) in HetNets. However, energy efficiency (EE) is very crucial for the deployment of a large number of low power nodes as they consume a lot of energy. In this work, we develop a novel EE-eICIC algorithm to determine the amount of ABSs and user equipment (UE) that should associate with picocells or macrocells from energy efficiency perspective. Due to the nonsmooth and mixed combinatorial features of this formulation, we focus on a suboptimal algorithm design. Using generalized fractional programming and the convex programming theory, we propose an iterative and relaxed-rounding algorithm to solve the problem. Numerical results illustrate that the proposed EE-eICIC algorithm achieves superior performance in comparison with state-of-the-art methods in terms of energy efficiency of both system and user.


Sign in / Sign up

Export Citation Format

Share Document