scholarly journals Potential Risks of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals from Inland and Marine Directions for a Marine Background Site in North China

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Qianqian Xue ◽  
Yingze Tian ◽  
Xinyi Liu ◽  
Xiaojun Wang ◽  
Bo Huang ◽  
...  

Ambient PM2.5-bound ions, OC, EC, heavy metals (HMs), 18 polycyclic aromatic hydrocarbons (PAHs), 7 hopanes, and 29 n-alkanes were detected at Tuoji Island (TI), the only marine background atmospheric monitoring station in North China. The annual PM2.5 average concentration was 47 ± 31 μg m−3, and the average concentrations of the compositions in PM2.5 were higher in cold seasons than in warm seasons. The cancer and non-cancer risks of HMs and PAHs in cold seasons were also higher than in warm seasons. BaP, Ni, and As dominated the ∑HQ (hazard quotient) in cold seasons, while the non-carcinogenic risk in warm seasons was mainly dominated by Ni, Mn, and As. The ILCR (incremental lifetime cancer risk) values associated with Cr and As were higher in the cold season, while ILCR-Ni values were higher in the warm season. The backward trajectory was calculated to identify the potential directions of air mass at TI. Through the diagnostic ratios of organic and inorganic tracers, the sources of particulate matter in different directions were judged. It was found that ship emissions and sea salt were the main sources from marine directions, while coal combustion, vehicles emissions, industrial process, and secondary aerosols were the main source categories for inland directions. In addition, potential HM and PAH risks from inland and marine directions were explored. The non-cancerous effects of TI were mainly affected by inland transport, especially from the southeast, northwest, and west-northwest. The cancerous effects of TI were mainly simultaneously affected by the inland direction and marine direction of transport.

Author(s):  
Fatin Samara ◽  
Isra Arshad Alam ◽  
Yehya ElSayed

Abstract Midwakh, originated in the Middle East, has started to spread globally with different brands commercialized online and in local stores across Europe and the USA. Dokha is the tobacco used in midwakh. To this day, risk of midwakh smoking is poorly understood. Three different types of dokha were evaluated in this study, classified as cold, medium, and hot using gas chromatography–mass spectrometry (GC–MS). The concentrations of nicotine and polycyclic aromatic hydrocarbons (PAHs) in raw and smoked dokha samples were measured, and the results were compared to data in the literature on different types of tobacco products. PAH concentrations were used to estimate the toxic equivalency quotient, daily exposures, incremental lifetime cancer risk, and hazard quotient. The level of nicotine in raw dokha exceeded by far the levels reported in cigarettes, cigar, waterpipe, and chewing tobacco. Although only a portion of the nicotine is released into the smoke, the amount of nicotine in dokha smoke exceeded those reported for cigarettes. Two PAHs were found in raw dokha at trace amounts and 12 PAHs were detected in dokha smoke in amounts that exceeded those reported for cigarette smoke. The PAHs distribution showed a specific pattern in the smoke and a higher risk factor than that obtained for cigarettes and other tobacco products. Dokha products present a potential higher risk and immediate action should be taken to avoid its global consumption.


Author(s):  
Hao Zhang ◽  
Lu Yang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Fine particulate matter (PM2.5) samples were collected in the summer and winter of 2015 and 2017 in Xinxiang, China. Nine polycyclic aromatic hydrocarbons (PAHs) and three nitro-PAHs (NPAHs) in PM2.5 were detected via high-performance liquid chromatography (HPLC). The PAHs concentration in summer and winter decreased from 6.37 ± 1.30 ng/m3 and 96.9 ± 69.9 ng/m3 to 4.89 ± 2.67 ng/m3 and 49.8 ± 43.4 ng/m3 from 2015 to 2017. NPAHs decreased in winter (from 1707 ± 708 pg/m3 to 1192 ± 1113 pg/m3), but increased in summer from 2015 (336 ± 77.2 pg/m3) to 2017 (456 ± 312 pg/m3). Diagnostic ratios of PAHs indicated that petroleum combustion was the main emission source in summer, and pollutants originating from the combustion of petroleum, coal and biomass dominated in winter. The 2-nitrofluoranthene (2-NFR)/2-nitropyrene (2-NP) ratio in this study demonstrated that the OH radical pathway was the main pathway for the formation of 2-NP and 2-NFR. The mean total benzo[a]pyrene-equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR) values decreased from 2013 to 2017. The high value of total BaPeq in the winter of 2017 in Xinxiang revealed that a high-risk of cancer remained for residents. The results of this study demonstrate that the decreases in PAHs and NPAHS concentrations from 2015 to 2017. Combined with reducing gaseous pollutants concentration, the reduction in this study might be attributable to emissions reductions by implementing the air pollution control regulations in Xinxiang city in 2016.


2021 ◽  
Author(s):  
Anna Tkachenko ◽  
Veronika Piskareva ◽  
Timur Koshovsky ◽  
Alexander Gennadiev ◽  
Mikhail Lychagin

<p>The Don River Delta is densely populated and subjected to the significant anthropogenic impact caused by agriculture, shipping, recreation and fishing activities. One of the major problems in the delta is wind surges, which cause catastrophic consequences due to the sharp water rise (up to 3,2 meter in 2014). Increasing technogenic pressure coupled with the unstable hydrological regime determines great interest of scientists in its study. Research of aquatic systems of the Don River delta carried out by the authors since 2012. Since that, a great data on heavy metals (HM) and polycyclic aromatic hydrocarbons (PAH) content in water, suspended matter and bottom sediments has been received. The data characterize different hydrological conditions including spring flood, summer and winter low water periods, and water surges of 2014 and 2019.</p><p>The content of HMs and PAHs in water and suspended matter of the Don delta is usually below the world average. There is a significant seasonal and spatial variability in the concentration of pollutants in suspended matter. In general, the majority of heavy metals are characterized by an increase in contents from the top of the delta to the estuary seaside. Deltaic waters were found polluted Cu with the maximum value in the mouth of the main shipping channel. Increased concentrations of HMs and PAHs are observed near or downstream of settlements and industrial facilities. According to seasonal changes the heavy metals in the Don delta can be divided into 2 groups. The first group includes Fe, Mn and Pb, which maximum concentrations are characteristic of the winter low-water period. The second group includes Cu, Ni, Zn and Mo, with the highest content during floods.</p><p>The average concentration of PAHs in the summer-autumn low-water period (300 ng/g) is almost 10 times lower than in the winter low-water period (3000 ng/g). The composition of PAHs in suspended matters is dominated by light compounds: diphenyl-phenanthrene-naphthalene association in the summer-autumn low-water period and phenanthrene-naphthalene-anthracene association during the winter low-water period. Small low-flow channels have a low content of polyarenes.</p><p>Surge events significantly affect the spatial distribution of HMs and polyarenes in suspended matter and bottom sediments, mainly due to an increase in flow turbulence. During the surge the content of HMs and PAHs in upper part of the sediments was found decreased, since in suspended matter increased.</p><p>This work was carried out with the financial support of the RFBR grant 18-05-80094.</p>


2020 ◽  
pp. 11-24
Author(s):  
Duangduean Thepnuan ◽  
Somporn Chantara

Polycyclic aromatic hydrocarbons (PAHs) bounded to ambient fine particles (PM2.5) were determined for enabling health risk assessment and source identification of ambient aerosols. Daily PM2.5 samples (24 h) were collected on quartz fiber filters by using a low volume air sampler (16.7 L min-1) during smoke haze period (March–April 2016) in Chiang Mai, Thailand. An average concentration of PM2.5 (n=54) was 65.3±17.6 μg m-3. The samples were extracted with dichloromethane using ultrasonication prior to PAHs analysis by GC-MS. Average concentrations of 16-PAHs, non-carcinogenic (nc) PAHs and carcinogenic (c) PAHs were 10.23±2.49, 5.48±1.70 and 4.75±1.43 ng m-3, respectively. Ratio values of cPAHs/ncPAHs ranged from 0.44 to 1.98. Strong correlation (r= 0.76) between PM2.5 and cPAHs concentration was observed. Toxicity equivalent concentrations (TEQ) of PAHs was 1.13±0.34 ng m-3. The value of inhalation cancer risk (ICR) for exposure of ambient PAHs calculated from TEQ value was 1.0×10-4 indicating high risk for long term exposure. Diagnostic ratios (DRs) of various pairs of PAHs revealed that biomass burning is a major source during smoke haze period.


Author(s):  
Bo Fang ◽  
Lei Zhang ◽  
Hao Zeng ◽  
Jiajia Liu ◽  
Ze Yang ◽  
...  

Exposure to polycyclic aromatic hydrocarbons (PAHs) may lead to adverse health risks. To understand the potential sources and carcinogenic risks of PAHs in Tangshan, 40 PM2.5 samples were collected for analysis of eighteen PM2.5-bound PAHs during non-heating period and heating period. The results display a significant variation. The median concentration of ∑18PAHs during the heating period (282 ng/m3) was higher than during the non-heating period (185 ng/m3). Especially, the median concentration of Benzopyrene (BaP) during the heating period (61.6 ng/m3) was 16.9-fold that during the non-heating period (3.64 ng/m3). It exceeded BaP annual average limit of China (1 ng/m3). Diagnostic ratios (DRs) and principal component analysis (PCA) both indicated that vehicle emissions and coal and biomass combustion were the dominant contributors of PAHs pollution in Tangshan. The incremental lifetime cancer risk (ILCR) of three age groups (children, teenagers, and adults) ranged from 2.56 × 10−6 to 5.26 × 10−5 during the entire sampling periods. The 95% risk values of adults exceeded 10−4 during the heating periods, indicating a potential health risk from PAHs.


2018 ◽  
Vol 247 ◽  
pp. 00047 ◽  
Author(s):  
Karolina Kuskowska ◽  
Wioletta Rogula-Kozłowska

In this paper, for the one selected sport facility in Warsaw in heating and non-heating periods: 1) average concentration of 15 polycyclic aromatic hydrocarbons (PAHs) associated with respirable fraction of particulate matter (PM4); 2) health hazards from the PM4-bound PAHs; 3) PM4-bound PAHs origin are described. PM samples were collected for 10 days of June and 10 days of November simultaneously inside and outside of the sports hall and next were analysed in term of PAHs content. Obtained results allowed to calculate selected indicators of cumulative exposure to the PAH mixture and the specific diagnostic ratios for individuals compounds from the PAHs group which indicate origin of PAHs. It has been shown that the exposure of sports hall users to PM4-bound PAHs is significantly higher in heating than non-heating season. It also confirm that fossil fuels and biomass combustion in heating period in Warsaw have a strong influence on the level of health exposure to PAH mixture both outdoor and inside of the buildings.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Rashid Mohammed ◽  
Zi-Feng Zhang ◽  
Chao Jiang ◽  
Ying-Hua Hu ◽  
Li-Yan Liu ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102, and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.


Author(s):  
Mansour A. Alghamdi ◽  
Salwa K. Hassan ◽  
Noura A. Alzahrani ◽  
Marwan Y. Al Sharif ◽  
Mamdouh I. Khoder

Data concerning polycyclic aromatic hydrocarbons (PAHs) in Jeddah’s schools, Saudi Arabia, and their implications for health risks to children, is scarce. Classroom air conditioner filter dusts were collected from primary schools in urban, suburban and residential areas of Jeddah. This study aimed to assess the characteristics of classroom-dust-bound PAHs and the health risks to children of PAH exposure. Average PAH concentrations were higher in urban schools than suburban and residential schools. Benzo (b)fluoranthene (BbF), benzo(ghi)perylene (BGP), chrysene (CRY) and Dibenz[a,h]anthracene (DBA) at urban and suburban schools and BbF, BGP, fluoranthene (FLT) and indeno (1, 2, 3, −cd)pyrene (IND) at residential schools were the dominant compounds in classroom dust. PAHs with five aromatic rings were the most abundant at all schools. The relative contribution of the individual PAH compounds to total PAH concentrations in the classroom dusts of schools indicate that the study areas do share a common source, vehicle emissions. Based on diagnostic ratios of PAHs, they are emitted from local pyrogenic sources, and traffic is the significant PAH source, with more significant contributions from gasoline-fueled than from diesel cars. Based on benzo[a]pyrene equivalent (BaPequi) calculations, total carcinogenic activity (TCA) for total PAHs represent 21.59% (urban schools), 20.99% (suburban schools), and 18.88% (residential schools) of total PAH concentrations. DBA and BaP were the most dominant compounds contributing to the TCA, suggesting the importance of BaP and DBA as surrogate compounds for PAHs in this schools. Based on incremental lifetime cancer risk (ILCingestion, ILCRinhalation, ILCRdermal) and total lifetime cancer risk (TLCR)) calculations, the order of cancer risk was: urban schools > suburban schools > residential schools. Both ingestion and dermal contact are major contributors to cancer risk. Among PAHs, DBA, BaP, BbF, benzo(a)anthracene (BaA), benzo(k)fluoranthene (BkF), and IND have the highest ILCR values at all schools. LCR and TLCR values at all schools were lower than 10−6, indicating virtual safety. DBA, BaP and BbF were the predominant contributors to cancer effects in all schools.


Sign in / Sign up

Export Citation Format

Share Document